论文标题

在半平面上的功能空间上的组成操作员:光谱和半群

Composition operators on function spaces on the halfplane: spectra and semigroups

论文作者

Chalendar, I., Partington, J. R.

论文摘要

本文考虑了Zen空间上的组成操作员(通过Laplace Transform在正半线上与加权功能空间相关的右半平面的一类加权伯格曼空间)。概括了Kucik在规范和基本规范上的工作,Schroderus在(基本)光谱上的工作,以及Arvanitidis和作者在构图运营商的半群中的工作。通过考虑强壮的伯格曼空间来说明结果。也就是说,在半平面上,强壮和伯格曼·希尔伯特的空间的交集。

This paper considers composition operators on Zen spaces (a class of weighted Bergman spaces of the right half-plane related to weighted function spaces on the positive half-line by means of the Laplace transform). Generalizations are given to work of Kucik on norms and essential norms, to work of Schroderus on (essential) spectra, and to work by Arvanitidis and the authors on semigroups of composition operators. The results are illustrated by consideration of the Hardy--Bergman space; that is, the intersection of the Hardy and Bergman Hilbert spaces on the half-plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源