论文标题

本地有限$ \ Mathcal {e} $的图像 - 双变量多项式代数的衍生

Images of locally finite $\mathcal{E}$-derivations of bivariate polynomial algebras

论文作者

Jia, Hongyu, Du, Xiankun, Tian, Haifeng

论文摘要

本文介绍了$ \ Mathcal {e} $ - 由于范登·埃森(Van den Essen),赖特(Wright)和赵(Zhao)引起的衍生结果的衍生类似物。我们证明,本地有限$ K $ - $ \ MATHCAL {e} $ - 多项式代数在两个变量的特征零的字段$ k $中的衍生是Mathieu-Zhao子空间。这一结果与范登·埃森(Van den Essen)一起,赖特(Wright)和赵(Zhao)在两个变量中多项式代数的情况下证实了LFED的猜想。

This paper presents an $\mathcal{E}$-derivation analogue of a result on derivations due to van den Essen, Wright and Zhao. We prove that the image of a locally finite $K$-$\mathcal{E}$-derivation of polynomial algebras in two variables over a field $K$ of characteristic zero is a Mathieu-Zhao subspace. This result together with that of van den Essen, Wright and Zhao confirms the LFED conjecture in the case of polynomial algebras in two variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源