论文标题

经欧吉调整的功能主成分分析

Eigen-Adjusted Functional Principal Component Analysis

论文作者

Jiang, Ci-Ren, Lila, Eardi, Aston, John AD, Wang, Jane-Ling

论文摘要

功能主成分分析(FPCA)已成为用于功能数据分析的广泛使用的降差工具。当有其他协变量可用时,现有的FPCA模型将它们集成到平均函数或平均函数和协方差函数中。但是,第一类的方法不适合显示二阶变化的数据,而第二阶变异的方法是耗时的,因此很难对降低降低表示的随后进行统计分析。为了解决这些问题,我们引入了一个经过特征调整的FPCA模型,该模型仅通过其特征值将协方差函数整合到协方差函数中。特别是,讨论了协变量特征值的不同结构(与不同的实际问题相对应),以说明模型的灵活性和效用。为了处理不同采样方案下的功能观测,我们采用局部线性smoOthor来估计平均功能和合并的协方差函数,并采用加权最小平方的方法来估计协方特异性特征值。在不同的采样方案下,进一步研究了所提出的估计量的收敛速率。除了模拟研究外,提出的模型还应用于在人类连接项目中收集的功能磁共振成像扫描,以进行功能连通性研究。

Functional Principal Component Analysis (FPCA) has become a widely-used dimension reduction tool for functional data analysis. When additional covariates are available, existing FPCA models integrate them either in the mean function or in both the mean function and the covariance function. However, methods of the first kind are not suitable for data that display second-order variation, while those of the second kind are time-consuming and make it difficult to perform subsequent statistical analyses on the dimension-reduced representations. To tackle these issues, we introduce an eigen-adjusted FPCA model that integrates covariates in the covariance function only through its eigenvalues. In particular, different structures on the covariate-specific eigenvalues -- corresponding to different practical problems -- are discussed to illustrate the model's flexibility as well as utility. To handle functional observations under different sampling schemes, we employ local linear smoothers to estimate the mean function and the pooled covariance function, and a weighted least square approach to estimate the covariate-specific eigenvalues. The convergence rates of the proposed estimators are further investigated under the different sampling schemes. In addition to simulation studies, the proposed model is applied to functional Magnetic Resonance Imaging scans, collected within the Human Connectome Project, for functional connectivity investigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源