论文标题

用于准线波方程的行进波

Traveling waves for a quasilinear wave equation

论文作者

Bruell, Gabriele, Idzik, Piotr, Reichel, Wolfgang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We consider a 2+1 dimensional wave equation appearing in the context of polarized waves for the nonlinear Maxwell equations. The equation is quasilinear in the time derivatives and involves two material functions $V$ and $Γ$. We prove the existence of traveling waves which are periodic in the direction of propagation and localized in the direction orthogonal to the propagation direction. Depending on the nature of the nonlinearity coeffcient $Γ$ we distinguish between two cases: (a) $Γ\in L^\infty$ being regular and (b) $Γ=γδ_0$ being a multiple of the delta potential at zero. For both cases we use bifuraction theory to prove the existence of nontrivial small-amplitude solutions. One can regard our results as a persistence result which shows that guided modes known for linear wave-guide geometries survive in the presence of a nonlinear constitutive law. Our main theorems are derived under a set of conditions on the linear wave operator. They are subsidised by explicit examples for the coefficients $V$ in front of the (linear) second time derivative for which our results hold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源