论文标题

深度规范的嵌入患者代表

Deep Normed Embeddings for Patient Representation

论文作者

Nanayakkara, Thesath, Clermont, Gilles, Langmead, Christopher James, Swigon, David

论文摘要

我们引入了一个新颖的对比表示学习目标和临床时间序列的培训计划。具体而言,我们投射高维EHR。数据到具有低维的封闭单位球,编码几何先验,以使原点代表理想化的完美健康状态,而欧几里得规范与患者的死亡率风险有关。此外,以化粪池患者为例,我们展示了如何学会将两个向量之间的角度与不同的器官系统失败相关联,从而学习一种紧凑的表示,这表明了死亡率风险和特定的器官衰竭。我们展示了如何将学习的嵌入方式用于在线患者监测,可以补充临床医生并提高下游机器学习任务的性能。这项工作是由于欲望的部分动机,也需要引入一种系统的方式来定义重症监护医学增强奖励的中级奖励。因此,与仅使用终端奖励相比,我们还展示了这种设计如何从学到的嵌入中产生不同的策略和价值分布。

We introduce a novel contrastive representation learning objective and a training scheme for clinical time series. Specifically, we project high dimensional EHR. data to a closed unit ball of low dimension, encoding geometric priors so that the origin represents an idealized perfect health state and the Euclidean norm is associated with the patient's mortality risk. Moreover, using septic patients as an example, we show how we could learn to associate the angle between two vectors with the different organ system failures, thereby, learning a compact representation which is indicative of both mortality risk and specific organ failure. We show how the learned embedding can be used for online patient monitoring, can supplement clinicians and improve performance of downstream machine learning tasks. This work was partially motivated from the desire and the need to introduce a systematic way of defining intermediate rewards for Reinforcement Learning in critical care medicine. Hence, we also show how such a design in terms of the learned embedding can result in qualitatively different policies and value distributions, as compared with using only terminal rewards.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源