论文标题
量化高维非高斯及其对宇宙学中Fisher分析的影响
Quantification of high dimensional non-Gaussianities and its implication to Fisher analysis in cosmology
论文作者
论文摘要
众所周知,功率谱无法完全表征非高斯密度场的统计特性。最近,已经提出了许多不同的统计数据来从非高斯宇宙学领域提取信息,这些信息比功率谱更好。 Fisher矩阵形式主义通常用于量化给定统计量可以约束宇宙学参数的值的准确性。但是,这些计算通常依赖于以下假设:所考虑的统计量的可能性遵循多元高斯分布。在这项工作中,我们遵循Sellentin&Heavens(2017),并使用两种不同的统计测试来识别不同统计数据中的非高斯语,例如功率谱,Bispectrum,明显的功率谱和小波spateret spatering Transform(WST)。我们使用Quijote Simulations删除了不同统计数据的非高斯组件,并使用\ textit {Gaussianization}统计数据进行Fisher矩阵计算。我们表明,在某些情况下,对参数的约束可能会更改$ \ sim 2 $。我们以简单的示例展示了不遵循多元高斯分布的统计数据在使用Fisher矩阵形式上时可以在宇宙学参数上人工紧密的界限。我们认为,这项工作中使用的非高斯测试代表了量化Fisher矩阵计算及其基本假设的鲁棒性的强大工具。我们释放用于计算CPU和GPU上可以运行的电源谱,双光谱和WST的代码。
It is well known that the power spectrum is not able to fully characterize the statistical properties of non-Gaussian density fields. Recently, many different statistics have been proposed to extract information from non-Gaussian cosmological fields that perform better than the power spectrum. The Fisher matrix formalism is commonly used to quantify the accuracy with which a given statistic can constrain the value of the cosmological parameters. However, these calculations typically rely on the assumption that the likelihood of the considered statistic follows a multivariate Gaussian distribution. In this work we follow Sellentin & Heavens (2017) and use two different statistical tests to identify non-Gaussianities in different statistics such as the power spectrum, bispectrum, marked power spectrum, and wavelet scatering transform (WST). We remove the non-Gaussian components of the different statistics and perform Fisher matrix calculations with the \textit{Gaussianized} statistics using Quijote simulations. We show that constraints on the parameters can change by a factor of $\sim 2$ in some cases. We show with simple examples how statistics that do not follow a multivariate Gaussian distribution can achieve artificially tight bounds on the cosmological parameters when using the Fisher matrix formalism. We think that the non-Gaussian tests used in this work represent a powerful tool to quantify the robustness of Fisher matrix calculations and their underlying assumptions. We release the code used to compute the power spectra, bispectra, and WST that can be run on both CPUs and GPUs.