论文标题
两阶段无边界问题的(几乎 - 最小值)的分支点
Branch Points for (Almost-)Minimizers of Two-Phase Free Boundary Problems
论文作者
论文摘要
我们研究了两相自由边界问题中分支点的存在和结构。更确切地说,我们将最小化的家族构建为一个山羊式炸药型功能,其自由边界在域的严格内部包含分支点。我们还举了一个例子,表明同一功能几乎最小化器的自由边界中的分支点可能几乎没有结构。最后一个示例与de philippis-spolaor-velichkov在固定溶液的自由边界中的结构相反。
We study the existence and structure of branch points in two-phase free boundary problems. More precisely, we construct a family of minimizers to an Alt- Caffarelli-Friedman type functional whose free boundaries contain branch points in the strict interior of the domain. We also give an example showing that branch points in the free boundary of almost-minimizers of the same functional can have very little structure. This last example stands in contrast with recent results of De Philippis- Spolaor-Velichkov on the structure of branch points in the free boundary of stationary solutions.