论文标题

在渐近极限中的t刺猜想

The Tadpole Conjecture in Asymptotic Limits

论文作者

Graña, Mariana, Grimm, Thomas W., van de Heisteeg, Damian, Herraez, Alvaro, Plauschinn, Erik

论文摘要

t的猜测表明,IIB型中复杂结构变形的完全稳定和F理论通量压实被限制在通量上的t骨严重阻塞。更确切地说,它指出,大量模量的稳定需要插座的磁通背景,该倒数在稳定场的数量中线性缩放。限制了复杂结构模量空间的渐近区域,我们给出了第一个概念参数,该参数解释了这种线性缩放设置,并阐明了为什么仅用于大量稳定的模量。我们的方法依赖于使用渐近hodge理论。特别是,我们使用这样一个事实,即在每个渐近制度中,正交SL(2) - 遮挡结构都会出现,使我们能够将通量分组为SL(2)占代表性和解次配音结构方向。我们表明,稳定模量尺度的数量具有由通量支持的SL(2)代表的数量,并且每个表示都可以修复单个模量。此外,我们发现,对于卡拉比(Calabi-Yau)来说,除了两倍的表示形式外,除了一个代表外,还可以识别出四倍。这使我们能够明确讨论模量稳定,并建立t的相关缩放限制。

The tadpole conjecture suggests that the complete stabilization of complex structure deformations in Type IIB and F-theory flux compactifications is severely obstructed by the tadpole bound on the fluxes. More precisely, it states that the stabilization of a large number of moduli requires a flux background with a tadpole that scales linearly in the number of stabilized fields. Restricting to the asymptotic regions of the complex structure moduli space, we give the first conceptual argument that explains this linear scaling setting and clarifies why it sets in only for a large number of stabilized moduli. Our approach relies on the use of asymptotic Hodge theory. In particular, we use the fact that in each asymptotic regime an orthogonal sl(2)-block structure emerges that allows us to group fluxes into sl(2)-representations and decouple complex structure directions. We show that the number of stabilized moduli scales with the number of sl(2)-representations supported by fluxes, and that each representation fixes a single modulus. Furthermore, we find that for Calabi-Yau four-folds all but one representation can be identified with representations occurring on two-folds. This allows us to discuss moduli stabilization explicitly and establish the relevant scaling constraints for the tadpole.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源