论文标题
严格增加和减少单词的亚中间的序列以及郭和poznanović的猜想
Strictly increasing and decreasing sequences in subintervals of words and a conjecture of Guo and Poznanović
论文作者
论文摘要
我们证明了Guo和Poznanović在某些01填充月亮多支诺斯中的链条的猜想。我们证明的关键要素是单词$ w $和对$(\ Mathcal {w}(w),\ Mathcal {m}(w))$增加tableaux的对应关系。我们通过使用Thomas和Yong的K-灌注操作员来定义这一对应关系,然后使用它来获得证明Guo andPoznanović的猜想的射击。在构建我们的双子酒店时,我们引入了RSK对应和Knuth等价的新变体。
We prove a conjecture of Guo and Poznanović concerning chains in certain 01-fillings of moon polyominoes. A key ingredient of our proof is a correspondence between words $w$ and pairs $(\mathcal{W}(w), \mathcal{M}(w))$ of increasing tableaux such that $\mathcal{M}(w)$ determines the lengths of the longest strictly increasing and strictly decreasing sequences in every subinterval of $w$. We define this correspondence by using Thomas and Yong's K-infusion operator and then use it to obtain the bijections that prove the conjecture of Guo and Poznanović. In constructing our bijections we introduce new variants of the RSK correspondence and Knuth equivalence.