论文标题

基于语义分割网络的基于氢化摩尔摩尔摩尔水交病变识别的实时计算机辅助诊断系统

A Semantic Segmentation Network Based Real-Time Computer-Aided Diagnosis System for Hydatidiform Mole Hydrops Lesion Recognition in Microscopic View

论文作者

Zhu, Chengze, Hu, Pingge, Zeng, Xianxu, Wang, Xingtong, Ji, Zehua, Shi, Li

论文摘要

作为具有恶性潜力的疾病,氢摩尔(HM)是最常见的妊娠滋养细胞疾病之一。对于病理学家而言,HM损伤的HM部分是诊断的重要基础。在病理部门中,HM病变的各种显微镜表现以及显微镜下的有限观点意味着需要具有丰富诊断经验的医生,以防止错过诊断和误诊。特征提取可以显着提高诊断过程的准确性和速度。作为一种非凡的诊断辅助技术,计算机辅助诊断(CAD)已被广泛用于临床实践。我们构建了一个基于学习的CAD系统,以实时识别微观视图中的HM水力病变。该系统由三个模块组成;图像镶嵌模块和边缘扩展模块处理图像以改善水力流病变识别模块的结果,该模块采用语义分割网络,我们的新型复合损失函数和逐步训练功能,以在识别水力发像病变方面取得最佳性能。我们使用HM水力数据集评估了系统。实验表明,我们的系统能够实时响应并正确地显示出具有精确标记的HM Hyrops病变的整个微观视图。

As a disease with malignant potential, hydatidiform mole (HM) is one of the most common gestational trophoblastic diseases. For pathologists, the HM section of hydrops lesions is an important basis for diagnosis. In pathology departments, the diverse microscopic manifestations of HM lesions and the limited view under the microscope mean that physicians with extensive diagnostic experience are required to prevent missed diagnosis and misdiagnosis. Feature extraction can significantly improve the accuracy and speed of the diagnostic process. As a remarkable diagnosis assisting technology, computer-aided diagnosis (CAD) has been widely used in clinical practice. We constructed a deep-learning-based CAD system to identify HM hydrops lesions in the microscopic view in real-time. The system consists of three modules; the image mosaic module and edge extension module process the image to improve the outcome of the hydrops lesion recognition module, which adopts a semantic segmentation network, our novel compound loss function, and a stepwise training function in order to achieve the best performance in identifying hydrops lesions. We evaluated our system using an HM hydrops dataset. Experiments show that our system is able to respond in real-time and correctly display the entire microscopic view with accurately labeled HM hydrops lesions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源