论文标题

在差异隐私下的位置轨迹的强大指纹

Robust Fingerprint of Location Trajectories Under Differential Privacy

论文作者

Jiang, Yuzhou, Yilmaz, Emre, Ayday, Erman

论文摘要

直接释放这些数据会提高隐私和责任(例如,由于未经授权的分配此类数据集)的疑虑,因为位置数据包含用户的敏感信息,例如常规移动模式和喜欢的位置。为了解决这个问题,我们提出了一种新颖的指纹识别方案,该方案同时识别未经授权的位置数据集重新分配,并为共享数据提供差异隐私保证。观察数据实用性因差异性机制而导致的数据降解,我们引入了一种以公用设施为中心的后处理方案,以在位置轨迹中的点之间恢复点之间的时空相关性。我们将此后处理方案进一步整合到我们的指纹方案中,作为采样方法。提出的指纹识别方案由于差异私人机制引入的噪声而缓解了共享数据集的效力(即,通过保留数据的公开统计数据来添加指纹)。同时,由于对后期处理的免疫力,这是差异隐私的基本属性,因此在整个过程中不会侵犯整个过程中的差异隐私。我们提出的指纹识别方案对针对指纹方案的已知且进行了充分研究的攻击非常强大,包括随机翻转攻击,基于相关的翻转攻击以及多个各方之间的碰撞,这使攻击者很难推断指纹代码并避免指控。通过在两个现实生活的位置数据集和两个合成数据集的实验中,我们表明我们的方案可实现高指纹的鲁棒性,并且胜过现有方法。此外,提出的指纹方案增加了差异私人数据集的数据实用性,这对数据分析仪有益。

Directly releasing those data raises privacy and liability (e.g., due to unauthorized distribution of such datasets) concerns since location data contain users' sensitive information, e.g., regular moving patterns and favorite spots. To address this, we propose a novel fingerprinting scheme that simultaneously identifies unauthorized redistribution of location datasets and provides differential privacy guarantees for the shared data. Observing data utility degradation due to differentially-private mechanisms, we introduce a utility-focused post-processing scheme to regain spatio-temporal correlations between points in a location trajectory. We further integrate this post-processing scheme into our fingerprinting scheme as a sampling method. The proposed fingerprinting scheme alleviates the degradation in the utility of the shared dataset due to the noise introduced by differentially-private mechanisms (i.e., adds the fingerprint by preserving the publicly known statistics of the data). Meanwhile, it does not violate differential privacy throughout the entire process due to immunity to post-processing, a fundamental property of differential privacy. Our proposed fingerprinting scheme is robust against known and well-studied attacks against a fingerprinting scheme including random flipping attacks, correlation-based flipping attacks, and collusions among multiple parties, which makes it hard for the attackers to infer the fingerprint codes and avoid accusation. Via experiments on two real-life location datasets and two synthetic ones, we show that our scheme achieves high fingerprinting robustness and outperforms existing approaches. Besides, the proposed fingerprinting scheme increases data utility for differentially-private datasets, which is beneficial for data analyzers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源