论文标题

磁性拓扑绝缘子MNBI2TE4中的大型巡回电子交换耦合4

Large Itinerant Electron Exchange Coupling in the Magnetic Topological Insulator MnBi2Te4

论文作者

Padmanabhan, Hari, Stoica, Vladimir A., Kim, Peter, Poore, Maxwell, Yang, Tiannan, Shen, Xiaozhe, Reid, Alexander H., Lin, Ming-Fu, Park, Suji, Yang, Jie, Wang, Huaiyu, Koocher, Nathan Z., Puggioni, Danilo, Min, Lujin, Lee, Seng-Huat, Mao, Zhiqiang, Rondinelli, James M., Lindenberg, Aaron M., Chen, Long-Qing, Wang, Xijie, Averitt, Richard D., Freeland, John W., Gopalan, Venkatraman

论文摘要

拓扑材料中的磁性产生了量相量化的阶段,该相具有量化的运输现象,并在Spintronics和量子信息中应用。此类阶段的出现依赖于局部旋转与包括拓扑结构的巡回状态之间的强烈相互作用,以及随后形成的交换间隙。但是,这种相互作用从未在任何固有的磁性拓扑材料中进行测量。使用多模式方法,在第一个实现的固有磁性拓扑绝缘子MNBI2TE4中测量了这种交换相互作用。询问非平衡自旋动力学,巡回频带与局部MN旋转表现出强烈的交换耦合。动量分辨的超快电子散射和磁化测量结果表明,在picsecond时尺度上通过电子形成散射的旋转旋转障碍。局部MN旋转,通过谐振X射线散射探测,尽管与初始激发均匀地脱钩,但仍与巡回旋转同时进行疾病。使用原子模拟对结果进行建模,估计局部和巡回旋转之间的交换耦合估计比superexchange相互作用大于100倍。这意味着在拓扑表面状态下应发生> 25 MEV的交换差距。通过直接量化局部 - 不断变化的交换耦合,这项工作验证了利用局部磁性序列的材料逐个设计策略,从而创建和操纵磁性拓扑阶段,从静态到超快时间表。

Magnetism in topological materials creates phases exhibiting quantized transport phenomena with applications in spintronics and quantum information. The emergence of such phases relies on strong interaction between localized spins and itinerant states comprising the topological bands, and the subsequent formation of an exchange gap. However, this interaction has never been measured in any intrinsic magnetic topological material. Using a multimodal approach, this exchange interaction is measured in MnBi2Te4, the first realized intrinsic magnetic topological insulator. Interrogating nonequilibrium spin dynamics, itinerant bands are found to exhibit a strong exchange coupling to localized Mn spins. Momentum-resolved ultrafast electron scattering and magneto-optic measurements reveal that itinerant spins disorder via electron-phonon scattering at picosecond timescales. Localized Mn spins, probed by resonant X-ray scattering, disorder concurrently with itinerant spins, despite being energetically decoupled from the initial excitation. Modeling the results using atomistic simulations, the exchange coupling between localized and itinerant spins is estimated to be >100 times larger than superexchange interactions. This implies an exchange gap of >25 meV should occur in the topological surface states. By directly quantifying local-itinerant exchange coupling, this work validates the materials-by-design strategy of utilizing localized magnetic order to create and manipulate magnetic topological phases, from static to ultrafast timescales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源