论文标题

在滑动窗口模型中改进了加权匹配

Improved Weighted Matching in the Sliding Window Model

论文作者

Alexandru, Cezar-Mihail, Dvořák, Pavel, Konrad, Christian, Naidu, Kheeran K.

论文摘要

我们考虑了计算的流式滑动窗口模型中的最大重量匹配(MWM)问题。在此模型中,输入由给定顶点套装$ v $ size $ n $的一系列加权边缘组成。目的是保持在$ l $最新边缘跨越图表中的最大重量匹配的近似值,对于某些整数$ l $,使用尽可能少的空间。在我们工作之前,最新的结果是Biabani等人的MWM的$(3.5+ \ Varepsilon)$ - 近似算法。 [Isaac'21]和Crouch等人的(未加权)最大匹配(MM)的$(3+ \ Varepsilon)$ - 近似。 [ESA'13]。两种算法都使用空间$ \ tilde {o}(n)$。 我们给出以下结果: 1。我们给出$(2+ \ varepsilon)$ - MWM的近似算法,带有space $ \ tilde {o}(\ sqrt {nl})$。在一个合理的假设下,每个滑动窗口中边缘跨越的图形很简单,我们的算法使用空间$ \ tilde {o}(n \ sqrt {n})$。 2。在$ \ tilde {o}(n)$太空制度中,我们给出了MWM的$(3+ \ varepsilon)$ - 近似算法,从而缩小了MWM和MM最著名的近似值之间的差距。 类似于Biabani等人的MWM算法,我们的算法都执行了$(2+ \ Varepsilon)$ - 近似$ \ tilde {o}(o}(n)$ - paz和schwartzman [Soda'17]不同portions的MWM太空流算法的多个实例。通过以不同的方式选择这些子流来获得我们的改进。此外,我们的$(2+ \ varepsilon)$ - 近似算法将Paz-Schwartzman算法运行在流的某些部分,并朝其他部件朝前方向沿反向方向运行,这允许以增加空间需求的成本来提高近似值。

We consider the Maximum-weight Matching (MWM) problem in the streaming sliding window model of computation. In this model, the input consists of a sequence of weighted edges on a given vertex set $V$ of size $n$. The objective is to maintain an approximation of a maximum-weight matching in the graph spanned by the $L$ most recent edges, for some integer $L$, using as little space as possible. Prior to our work, the state-of-the-art results were a $(3.5+\varepsilon)$-approximation algorithm for MWM by Biabani et al. [ISAAC'21] and a $(3+\varepsilon)$-approximation for (unweighted) Maximum Matching (MM) by Crouch et al. [ESA'13]. Both algorithms use space $\tilde{O}(n)$. We give the following results: 1. We give a $(2+\varepsilon)$-approximation algorithm for MWM with space $\tilde{O}(\sqrt{nL})$. Under the reasonable assumption that the graphs spanned by the edges in each sliding window are simple, our algorithm uses space $\tilde{O}(n \sqrt{n})$. 2. In the $\tilde{O}(n)$ space regime, we give a $(3+\varepsilon)$-approximation algorithm for MWM, thereby closing the gap between the best-known approximation ratio for MWM and MM. Similar to Biabani et al.'s MWM algorithm, both our algorithms execute multiple instances of the $(2+\varepsilon)$-approximation $\tilde{O}(n)$-space streaming algorithm for MWM by Paz and Schwartzman [SODA'17] on different portions of the stream. Our improvements are obtained by selecting these substreams differently. Furthermore, our $(2+\varepsilon)$-approximation algorithm runs the Paz-Schwartzman algorithm in reverse direction over some parts of the stream, and in forward direction over other parts, which allows for an improved approximation guarantee at the cost of increased space requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源