论文标题

用于准粒子干扰成像的自适应稀疏采样

Adaptive Sparse Sampling for Quasiparticle Interference Imaging

论文作者

Oppliger, Jens, Zengin, Berk, Liu, Danyang, Hauser, Kevin, Witteveen, Catherine, von Rohr, Fabian, Natterer, Fabian Donat

论文摘要

准粒子干扰成像(QPI)从状态(LDOS)图的端密度转换(LDOS)图提供了对量子材料的带结构的见解。传统上,由于大量所需的测量可能需要几天的时间才能完成,因此他们使用扫描隧道显微镜的获取很乏味。 QPI成像稀疏采样的最新证明表明,仅通过对总LDO的小且随机的子集进行采样,如何从根本上减少有效的测量时间。但是,忠实地恢复QPI图像所需的子采样量仍然是一个反复出现的问题。在这里,我们引入了一种自适应稀疏采样(ASS)方法,在该方法中,我们逐渐积累了稀疏的LDOS测量值,直到通过压缩感应恢复实现所需的质量水平。 LDO的迭代测量随机子集可以与用于图像注册表和漂移校正的常规地形图像交织在一起。这些参考地形还允许恢复中断的测量值,以进一步提高QPI质量。我们的屁股方法是对准粒子干扰成像的方便扩展,应消除实施稀疏采样映射方案的进一步犹豫。

Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源