论文标题

各向异性梯度中的Skyrmion袋

The skyrmion bags in an anisotropy gradient

论文作者

Zeng, Zhaozhuo, Mehmood, Nasir, Ma, Yunxu, Wang, Jianing, Wang, Jianbo, Liu, Qingfang

论文摘要

Skyrmion Bags作为带任意拓扑费的自旋纹理,预计将是赛马场记忆中的载体。在这里,我们从理论上和数字上研究了各向异性梯度中的气囊袋的动力学。发现没有边界潜力,Skyrmion袋的动力学取决于旋转纹理,并且具有$ Q = 0 $的Skyrmionium的速度比其他Skyrmion Bags快。但是,当天空袋沿边界移动时,所有具有不同$ q $的天空袋的速度都是相同的。这可以归因于$ u/η_{xx} $的相同值,其中$ u $和$η_{xx} $是与Skyrmion Bag的磁化分布相关的术语。此外,在这两种情况下,我们使用Thiele方法来得出了Skyrmion袋的动力学,并讨论了Thiele方程的范围。在一定范围内,模拟结果与分析计算的结果非常吻合。我们的发现提供了一种根据Skyrmion袋操纵赛道记忆的替代方法。

Skyrmion bags as spin textures with arbitrary topological charge are expected to be the carriers in racetrack memory. Here, we theoretically and numerically investigated the dynamics of skyrmion bags in an anisotropy gradient. It is found that, without the boundary potential, the dynamics of skyrmion bags are dependent on the spin textures, and the velocity of skyrmionium with $Q = 0$ is faster than other skyrmion bags. However, when the skyrmion bags move along the boundary, the velocities of all skyrmion bags with different $Q$ are same. This can be attributed to the same value of $u/η_{xx}$, where the $u$ and $η_{xx}$ are the terms related to the magnetization distribution of skyrmion bag. In addition, we theoretically derived the dynamics of skyrmion bags in the two cases using the Thiele approach and discussed the scope of Thiele equation. Within a certain range, the simulation results are in good agreement with the analytically calculated results. Our findings provide an alternative way to manipulate the racetrack memory based on the skyrmion bags.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源