论文标题
CMOS电路实施尖峰神经网络,使用片上无监督的STDP学习用于模式识别
CMOS Circuit Implementation of Spiking Neural Network for Pattern Recognition Using On-chip Unsupervised STDP Learning
论文作者
论文摘要
高速和低功率的大量数据计算需要节能计算体系结构。与传统的人工神经网络(ANN)相比,具有生物启发的峰值依赖性可塑性学习(STDP)的尖峰神经网络(SNN)是能节能神经形态系统的有前途的解决方案。先前在SNN上进行了SNN的研究主要使用难以制造的回忆设备。 SNN上的一些报告的作品利用了Memristor宏观模型,这些模型基于软件,无法完全洞悉电路实施挑战。本文首次介绍了SNN系统的全电路级实现,该系统具有标准CMOS技术中无监督的STDP学习。它不涉及使用FPGA,CPU或GPU来训练神经网络。我们通过芯片训练和使用180 nm CMOS技术对SNN进行了完整的电路级设计,实现和模拟。还提出了对拟议的SNN电路与先前相关工作的全面比较。为了证明需要基于速率学习的应用程序场景的CMOS突触电路的多功能性,我们对基于配对的STDP电路进行了调整以获得BienenenStock-Cooper-Munro(BCM)特征,并将其应用于心率分类。
Computation on a large volume of data at high speed and low power requires energy-efficient computing architectures. Spiking neural network (SNN) with bio-inspired spike-timing-dependent plasticity learning (STDP) is a promising solution for energy-efficient neuromorphic systems than conventional artificial neural network (ANN). Previous works on SNN with STDP learning primarily uses memristive devices which are difficult to fabricate. Some reported works on SNN makes use of memristor macro models, which are software-based and cannot give complete insight into circuit implementation challenges. This article presents for the first time, a full circuit-level implementation of the SNN system featuring on-chip unsupervised STDP learning in standard CMOS technology. It does not involve the use of FPGAs, CPUs or GPUs for training the neural network. We demonstrated the complete circuit-level design, implementation and simulation of SNN with on-chip training and inference for pattern classification using 180 nm CMOS technology. A comprehensive comparison of the proposed SNN circuit with the previous related work is also presented. To demonstrate the versatility of the CMOS synapse circuit for application scenarios requiring rate-based learning, we have tuned the pair-based STDP circuit to obtain Bienenstock-Cooper-Munro (BCM) characteristics and applied it to heart rate classification.