论文标题
在前爆炸算术上扩展了非统计量子量子
On Presburger arithmetic extended with non-unary counting quantifiers
论文作者
论文摘要
我们考虑使用添加的整数的一阶逻辑。该逻辑通过模量计数,阈值计数和精确计数量词扩展了经典的一阶逻辑,所有这些都应用于变量的单元(在此,在明确给出模量和阈值时,将残留物作为术语给出,而Moduli和Moduli和阈值明确给出)。我们的主要结果表明,这种逻辑的满意度在两倍的指数空间中是可决定的。如果仅允许阈值和精确计数量化符,我们证明了与线性多个交替的两倍指数时间交替的上限。后一个结果几乎与伯曼在不计数量词的情况下的一阶逻辑的确切复杂性相匹配。 为了获得这些结果,我们首先将阈值和精确计数量词转换为多项式时间的经典一阶逻辑(这已经证明了第二个结果)。为了处理元素的剩余模量计数量词,我们首先将它们以双重指数时间为单位减少到单个元素的调制量词。对于这些量词,我们提供了类似于Reddy和Loveland的一阶逻辑程序的量化程序消除程序,并分析了此过程中出现的系数,常数和模量的增长。以这种方式获得的界限允许将原始公式的定量限制为有界大小的整数,这意味着上面提到的第一个结果。 我们的逻辑与Chistikov等人所考虑的逻辑无与伦比。在2022年。它们允许在量词中进行更多的一般计数操作,但仅允许单位量词。从一百派量词到非单位量词的转变是非平凡的,例如,Härtig量化器的非统一版本导致了不可证实的理论。
We consider a first-order logic for the integers with addition. This logic extends classical first-order logic by modulo-counting, threshold-counting and exact-counting quantifiers, all applied to tuples of variables (here, residues are given as terms while moduli and thresholds are given explicitly). Our main result shows that satisfaction for this logic is decidable in two-fold exponential space. If only threshold- and exact-counting quantifiers are allowed, we prove an upper bound of alternating two-fold exponential time with linearly many alternations. This latter result almost matches Berman's exact complexity of first-order logic without counting quantifiers. To obtain these results, we first translate threshold- and exact-counting quantifiers into classical first-order logic in polynomial time (which already proves the second result). To handle the remaining modulo-counting quantifiers for tuples, we first reduce them in doubly exponential time to modulo-counting quantifiers for single elements. For these quantifiers, we provide a quantifier elimination procedure similar to Reddy and Loveland's procedure for first-order logic and analyse the growth of coefficients, constants, and moduli appearing in this process. The bounds obtained this way allow to restrict quantification in the original formula to integers of bounded size which then implies the first result mentioned above. Our logic is incomparable with the logic considered by Chistikov et al. in 2022. They allow more general counting operations in quantifiers, but only unary quantifiers. The move from unary to non-unary quantifiers is non-trivial, since, e.g., the non-unary version of the Härtig quantifier results in an undecidable theory.