论文标题

将特定于任务的分类器重用作为歧视器:无歧视者的对抗域适应

Reusing the Task-specific Classifier as a Discriminator: Discriminator-free Adversarial Domain Adaptation

论文作者

Chen, Lin, Chen, Huaian, Wei, Zhixiang, Jin, Xin, Tan, Xiao, Jin, Yi, Chen, Enhong

论文摘要

对抗性学习已经为无监督的领域适应(UDA)取得了出色的表现。现有的对抗性UDA方法通常采用额外的判别器来使用功能提取器玩Min-Max游戏。但是,这些方法中的大多数无法有效利用预测的判别信息,因此导致发电机的模式崩溃。在这项工作中,我们从不同的角度解决了这个问题,并以无歧视者的对抗性学习网络(DALN)的形式设计了一个简单而有效的对抗范式,其中,类别分类器被重复使用为歧视器,作为一个歧视者,通过实现统一的目标,以实现统一的范围,以实现范围的范围,以实现统一的范围。基本上,我们引入了一个核 - 核 - 瓦斯坦差异(NWD),该差异具有明确的指导含义,可以进行歧视。这样的NWD可以与分类器结合起来,以作为满足K-Lipschitz约束的歧视者,而无需额外的减肥或梯度惩罚策略。如果没有铃铛和哨声,达尔就可以与各种公共数据集上的现有最新方法(SOTA)进行比较。此外,作为一种插件技术,NWD可以直接用作通用正规器,以使现有的UDA算法受益。代码可从https://github.com/xiaoachen98/daln获得。

Adversarial learning has achieved remarkable performances for unsupervised domain adaptation (UDA). Existing adversarial UDA methods typically adopt an additional discriminator to play the min-max game with a feature extractor. However, most of these methods failed to effectively leverage the predicted discriminative information, and thus cause mode collapse for generator. In this work, we address this problem from a different perspective and design a simple yet effective adversarial paradigm in the form of a discriminator-free adversarial learning network (DALN), wherein the category classifier is reused as a discriminator, which achieves explicit domain alignment and category distinguishment through a unified objective, enabling the DALN to leverage the predicted discriminative information for sufficient feature alignment. Basically, we introduce a Nuclear-norm Wasserstein discrepancy (NWD) that has definite guidance meaning for performing discrimination. Such NWD can be coupled with the classifier to serve as a discriminator satisfying the K-Lipschitz constraint without the requirements of additional weight clipping or gradient penalty strategy. Without bells and whistles, DALN compares favorably against the existing state-of-the-art (SOTA) methods on a variety of public datasets. Moreover, as a plug-and-play technique, NWD can be directly used as a generic regularizer to benefit existing UDA algorithms. Code is available at https://github.com/xiaoachen98/DALN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源