论文标题

一类复杂的分形插值功能的分形维度

Fractal dimension for a class of complex-valued fractal interpolation functions

论文作者

Verma, Manuj, Priyadarshi, Amit, Verma, Saurabh

论文摘要

在最近的文献中,有许多研究论文涉及实价分形功能的分形维度。本文的主要重点是研究复杂值功能的分形维度。本文还强调了复杂值和实值分形函数的维度结果之间的差异。在本文中,我们研究了复杂值函数$ g(x)+i h(x)$的分形维,将其分形维与函数图$ g(x)+h(x)$和$(x)$和$(x),h(x),h(x)$进行比较,并获得了一些界限。此外,我们研究了与细菌功能$ f $,基本功能$ b $和缩放函数$α_k$相关的复杂值分形插值功能的分形维度。

There are many research papers dealing with fractal dimension of real-valued fractal functions in the recent literature. The main focus of the present paper is to study fractal dimension of complex-valued functions. This paper also highlights the difference between dimensional results of the complex-valued and real-valued fractal functions. In this paper, we study the fractal dimension of the graph of complex-valued function $g(x)+i h(x)$, compare its fractal dimension with the graphs of functions $g(x)+h(x)$ and $(g(x),h(x))$ and also obtain some bounds. Moreover, we study the fractal dimension of the graph of complex-valued fractal interpolation function associated with a germ function $f$, base function $b$ and scaling functions $α_k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源