论文标题

ISING模型中的纠缠熵和消极情绪

Entanglement entropy and negativity in the Ising model with defects

论文作者

Rogerson, David, Pollmann, Frank, Roy, Ananda

论文摘要

二维形成共形场理论(CFT)中的缺陷包含其特征的签名。在这项工作中,我们使用密度矩阵重新归一化组(DMRG)技术计算了在能量和双重性缺陷的情况下,在存在能量和二元性缺陷的情况下,子系统的纠缠熵(EE)和纠缠负元(EN)。我们表明,由于存在局部和离域零能模式,二元性缺陷的EE与能量缺陷相比具有根本不同的特征。特别感兴趣的是最近使用免费费米昂计算获得的EE中的非平凡“有限尺寸校正”。与总系统大小相比,当子系统大小相当可观并导致一维量子量子系统的通常对数缩放特征偏离时,就会出现这些校正。使用具有开放和无限边界条件的矩阵乘积状态,我们从数值上证明了在热力学极限下有限子系统大小的零模式的消失。我们的结果为最近的免费费米昂计算提供了进一步的支持,但显然与基于扭曲的圆环分区函数的早期分析现场理论相矛盾。随后,我们计算两个被缺陷隔开的两个不相交子系统之间的EN(log-en)对数。我们表明,对数EN与子系统的分离以对数缩放。但是,该对数缩放的系数产生的有效中心电荷与从EE的类似计算中获得的有效中心电荷有所不同。这些缺陷将其指纹留在了日志EN缩放的转向术语中。此外,日志EN接收到类似的“有限尺寸校正”,例如EE,这会导致其特征对数缩放的偏差。

Defects in two-dimensional conformal field theories (CFTs) contain signatures of their characteristics. In this work, we compute the entanglement entropy (EE) and the entanglement negativity (EN) of subsystems in the presence of energy and duality defects in the Ising CFT using the density matrix renormalization group (DMRG) technique. We show that the EE for the duality defect exhibits fundamentally different characteristics compared to the energy defect due to the existence of localized and delocalized zero energy modes. Of special interest is the nontrivial `finite-size correction' in the EE obtained recently using free fermion computations. These corrections arise when the subsystem size is appreciable compared to the total system size and lead to a deviation from the usual logarithmic scaling characteristic of one-dimensional quantum-critical systems. Using matrix product states with open and infinite boundary conditions, we numerically demonstrate the disappearance of the zero mode contribution for finite subsystem sizes in the thermodynamic limit. Our results provide further support to the recent free fermion computations, but clearly contradict earlier analytical field theory calculations based on twisted torus partition functions. Subsequently, we compute the logarithm of the EN (log-EN) between two disjoint subsystems separated by a defect. We show that the log-EN scales logarithmically with the separation of the subsystems. However, the coefficient of this logarithmic scaling yields a continuously-varying effective central charge that is different from that obtained from analogous computations of the EE. The defects leave their fingerprints in the subleading term of the scaling of the log-EN. Furthermore, the log-EN receives similar `finite size corrections' like the EE which leads to deviations from its characteristic logarithmic scaling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源