论文标题

部分可观测时空混沌系统的无模型预测

Limitations of variational quantum algorithms: a quantum optimal transport approach

论文作者

De Palma, Giacomo, Marvian, Milad, Rouzé, Cambyse, França, Daniel Stilck

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The impressive progress in quantum hardware in the last years has raised the interest of the quantum computing community in harvesting the computational power of such devices. However, in the absence of error correction, these devices can only reliably implement very shallow circuits or comparatively deeper circuits at the expense of a nontrivial density of errors. In this work, we obtain extremely tight limitation bounds for standard NISQ proposals in both the noisy and noiseless regimes, with or without error-mitigation tools. The bounds limit the performance of both circuit model algorithms, such as QAOA, and also continuous-time algorithms, such as quantum annealing. In the noisy regime with local depolarizing noise $p$, we prove that at depths $L=\mathcal{O}(p^{-1})$ it is exponentially unlikely that the outcome of a noisy quantum circuit outperforms efficient classical algorithms for combinatorial optimization problems like Max-Cut. Although previous results already showed that classical algorithms outperform noisy quantum circuits at constant depth, these results only held for the expectation value of the output. Our results are based on newly developed quantum entropic and concentration inequalities, which constitute a homogeneous toolkit of theoretical methods from the quantum theory of optimal mass transport whose potential usefulness goes beyond the study of variational quantum algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源