论文标题
社交网络中最大化影响最大化的多转化进化框架
A Multi-Transformation Evolutionary Framework for Influence Maximization in Social Networks
论文作者
论文摘要
影响最大化是挖掘社交网络深入信息的关键问题,该信息旨在从网络中选择一个种子,以最大程度地增加受影响的节点的数量。为了评估种子套装的影响,现有研究提出了较低的计算成本转换,以替代昂贵的蒙特卡洛模拟过程。这些基于网络先验知识的替代转换引起了不同特征与各种观点相似的搜索行为。具体而言,用户很难先验确定合适的转换。本文提出了一个多种转化进化框架的影响最大化(MTEFIM),并保证了融合的保证,以利用替代转换的潜在相似性和独特的优势,并避免用户手动确定最合适的转换。在MTEFIM中,将多个转换同时优化为多个任务。每个转换均分配一个进化求解器。 MTEFIM的三个主要组成部分是通过以下方式进行的:1)基于不同人群个体的重叠程度,2)根据转变间的关系估算转化的潜在关系,2)根据转变之间的关系,将个体转移到跨种群中,以及3)选择最终的输出种子集,其中包含所有转换知识。 MTEFIM的有效性在基准和现实世界社交网络上得到了验证。实验结果表明,与几种流行的IM特异性方法相比,MTEFIM可以有效地利用跨多个转换的潜在转移知识,以实现高度竞争性能。可以在https://github.com/xiaofangxd/mtefim上访问MTEFIM的实现。
Influence maximization is a crucial issue for mining the deep information of social networks, which aims to select a seed set from the network to maximize the number of influenced nodes. To evaluate the influence spread of a seed set efficiently, existing studies have proposed transformations with lower computational costs to replace the expensive Monte Carlo simulation process. These alternate transformations, based on network prior knowledge, induce different search behaviors with similar characteristics to various perspectives. Specifically, it is difficult for users to determine a suitable transformation a priori. This article proposes a multi-transformation evolutionary framework for influence maximization (MTEFIM) with convergence guarantees to exploit the potential similarities and unique advantages of alternate transformations and to avoid users manually determining the most suitable one. In MTEFIM, multiple transformations are optimized simultaneously as multiple tasks. Each transformation is assigned an evolutionary solver. Three major components of MTEFIM are conducted via: 1) estimating the potential relationship across transformations based on the degree of overlap across individuals of different populations, 2) transferring individuals across populations adaptively according to the inter-transformation relationship, and 3) selecting the final output seed set containing all the transformation's knowledge. The effectiveness of MTEFIM is validated on both benchmarks and real-world social networks. The experimental results show that MTEFIM can efficiently utilize the potentially transferable knowledge across multiple transformations to achieve highly competitive performance compared to several popular IM-specific methods. The implementation of MTEFIM can be accessed at https://github.com/xiaofangxd/MTEFIM.