论文标题
通过平行频率关注的自动睡眠分期
Automated Sleep Staging via Parallel Frequency-Cut Attention
论文作者
论文摘要
本文提出了一个新的框架,以根据权威的睡眠医学指导自动捕获人睡眠的脑电图(EEG)信号的时间频率。该框架由两个部分组成:第一部分通过将输入EEG频谱分配为一系列时频贴片来提取内容丰富的特征。第二部分是由基于注意力的体系结构有效地搜索分配的时频贴片和并行睡眠阶段定义因素之间的相关性构成的。所提出的管道在Sleep Heart Health研究数据集上进行了验证,其阶段唤醒,N2和N3的新最新结果获得了0.93、0.88和0.87的相应F1分数,并且仅使用EEG信号。所提出的方法还具有高评分者间可靠性为0.80 kappa。我们还可以看到睡眠分期决策与提出方法提取的特征之间的对应关系,为我们的模型提供了强大的解释性。
This paper proposes a novel framework for automatically capturing the time-frequency nature of electroencephalogram (EEG) signals of human sleep based on the authoritative sleep medicine guidance. The framework consists of two parts: the first part extracts informative features by partitioning the input EEG spectrograms into a sequence of time-frequency patches. The second part is constituted by an attention-based architecture to efficiently search for the correlation between partitioned time-frequency patches and defining factors of sleep stages in parallel. The proposed pipeline is validated on the Sleep Heart Health Study dataset with new state-of-the-art results for the stages wake, N2, and N3, obtaining respective F1 scores of 0.93, 0.88, and 0.87, with only EEG signals used. The proposed method also has a high inter-rater reliability of 0.80 kappa. We also visualize the correspondence between sleep staging decisions and features extracted by the proposed method, providing strong interpretability for our model.