论文标题

LIMSUP集合在公制空间中的大型交点属性

Large intersection property for limsup sets in metric space

论文作者

Hu, Zhang-nan, Li, Bing, Yang, Linqi

论文摘要

我们表明,limsup集由紧凑型ahlfors $ s $ s $ regular space $(x,x,\ mathscr {b},μ,ρ)$产生的limsup集属于与index $λ$的大相交的类别,由$ \ m nathcal {g}^g}^λ(x x x)$ sodex $λ$属于$ undex $λ$。特别是,这提供了此类集合的Hausdorff维度的下限。这些结果适用于获得带有指数$γ_2$和$δ$的LIMSUP随机分形,属于$ \ Mathcal {g}^{s-δ-γ_2}(x)$,几乎可以肯定,随机覆盖集,带有指数式混合属性属于$ \ Mathcal属于$ \ nter $ \ nter $ see $ suery $ suely $ suely $ sure suriely surecy surecy sure surecy surecy surecy n wer wery s_ s_0} s_0} s_0} s_0}(x)覆盖集的Hausdorff尺寸几乎肯定。我们还研究了矩形在度量空间中产生的LIMSUP集的大交点。

We show that limsup sets generated by a sequence of open sets in compact Ahlfors $s$-regular space $(X,\mathscr{B},μ,ρ)$ belong to the classes of sets with large intersections with index $λ$, denoted by $\mathcal{G}^λ(X)$, under some conditions. In particular, this provides a lower bound on Hausdorff dimension of such sets. These results are applied to obtain that limsup random fractals with indices $γ_2$ and $δ$ belong to $\mathcal{G}^{s-δ-γ_2}(X)$ almost surely, and random covering sets with exponentially mixing property belong to $\mathcal{G}^{s_0}(X)$ almost surely, where $s_0$ equals to the corresponding Hausdorff dimension of covering sets almost surely. We also investigate the large intersection property of limsup sets generated by rectangles in metric space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源