论文标题
多模式超晶扩散网络具有阿尔茨海默氏症分类的双重先验
Multi-Modal Hypergraph Diffusion Network with Dual Prior for Alzheimer Classification
论文作者
论文摘要
自动诊断阿尔茨海默氏病的前途阶段与患者治疗以改善生活质量非常相关。我们将此问题作为多模式分类任务。多模式数据提供了更丰富和互补的信息。但是,现有技术仅考虑数据与单个/多模式成像数据之间的低阶关系。在这项工作中,我们为阿尔茨海默氏病的诊断引入了一个新型的半监督超遗传学学习框架。我们的框架允许多模式成像和非成像数据之间建立高阶关系,同时需要标记为微小的集合。首先,我们引入了一种双重嵌入策略,用于构建保留数据语义的强大超图。我们通过使用基于对比的机制在图像和图形级别上执行扰动不变性来实现这一目标。其次,我们通过半明确的流动提出了一个动态调节的超淋巴扩散模型,以改善预测性不确定性。通过我们的实验,我们证明了我们的框架能够优于阿尔茨海默氏病诊断的当前技术。
The automatic early diagnosis of prodromal stages of Alzheimer's disease is of great relevance for patient treatment to improve quality of life. We address this problem as a multi-modal classification task. Multi-modal data provides richer and complementary information. However, existing techniques only consider either lower order relations between the data and single/multi-modal imaging data. In this work, we introduce a novel semi-supervised hypergraph learning framework for Alzheimer's disease diagnosis. Our framework allows for higher-order relations among multi-modal imaging and non-imaging data whilst requiring a tiny labelled set. Firstly, we introduce a dual embedding strategy for constructing a robust hypergraph that preserves the data semantics. We achieve this by enforcing perturbation invariance at the image and graph levels using a contrastive based mechanism. Secondly, we present a dynamically adjusted hypergraph diffusion model, via a semi-explicit flow, to improve the predictive uncertainty. We demonstrate, through our experiments, that our framework is able to outperform current techniques for Alzheimer's disease diagnosis.