论文标题
肮脏拓扑线的稳健多部分纠缠
Robust multipartite entanglement in dirty topological wires
论文作者
论文摘要
通常,在存在远距离相关性和/或空间疾病的情况下,识别和表征物质的量子阶段通常是一项具有挑战性和相关的任务。在这里,我们研究了KiteAV链具有可变范围配对和化学电位的不同位点依赖性的概括,可解决可相当和不可限的调制以及安德森疾病。特别是,我们通过研究系统大小的量子渔民信息(QFI)的缩放来分析脏拓扑线的基底状态(ME)。对于最近的邻居配对,QFI的Heisenberg缩放是在与主持Majorana模式的拓扑阶段一对一的对应关系中发现的。对于有限范围的配对,我们通过QFI的超扩张缩放尺度识别远程相位,并表征复杂的叶结构相图。总体而言,我们观察到我对空间不均匀性的有限强度是强大的。这项工作有助于将我确立为研究拓扑系统有趣方面的中心数量。
Identifying and characterizing quantum phases of matter in the presence of long range correlations and/or spatial disorder is, generally, a challenging and relevant task. Here, we study a generalization of the Kiteav chain with variable-range pairing and different site-dependence of the chemical potential, addressing commensurable and incommensurable modulations as well as Anderson disorder. In particular, we analyze multipartite entanglement (ME) in the ground state of the dirty topological wires by studying the scaling of the quantum Fisher information (QFI) with the system's size. For nearest-neighbour pairing the Heisenberg scaling of the QFI is found in one-to-one correspondence with topological phases hosting Majorana modes. For finite-range pairing, we recognize long-range phases by the super-extensive scaling of the QFI and characterize complex lobe-structured phase diagrams. Overall, we observe that ME is robust against finite strengths of spatial inhomogeneity. This work contributes to establish ME as a central quantity to study intriguing aspects of topological systems.