论文标题
基于VAE的推荐人的积极和负面批评
Positive and Negative Critiquing for VAE-based Recommenders
论文作者
论文摘要
提供推荐物品的解释使用户可以通过批评解释的一部分来完善建议。由于从多模式生成模型的角度重新审查了批评,最近的工作提出了M&MS-VAE,该公司在建议,解释和批评方面实现了最先进的绩效。 M&MS-VAE和类似模型允许用户对批评产生负面评论(即明确不同意)。但是,他们有一个重要的缺点:用户不能积极批评(即突出显示所需的功能)。我们用M&MS-VAE+解决了这种缺陷,M&MS-VAE+是M&MS-VAE的扩展,可以进行积极和负面的批评。除了建模用户的交互和键形 - 使用偏好之外,我们还对其键形使用不喜欢。此外,我们设计了一个新颖的批评模块,该模块以自我监督的方式进行了训练。我们在两个数据集上的实验表明,在建议和解释性能中,M&MS-VAE+匹配或超过M&MS-VAE。此外,我们的结果表明,在正面和负面的多步批评中,代表正面和负面的批评的不同,可以使M&MS-VAE+显着胜过M&MS-VAE和其他模型。
Providing explanations for recommended items allows users to refine the recommendations by critiquing parts of the explanations. As a result of revisiting critiquing from the perspective of multimodal generative models, recent work has proposed M&Ms-VAE, which achieves state-of-the-art performance in terms of recommendation, explanation, and critiquing. M&Ms-VAE and similar models allow users to negatively critique (i.e., explicitly disagree). However, they share a significant drawback: users cannot positively critique (i.e., highlight a desired feature). We address this deficiency with M&Ms-VAE+, an extension of M&Ms-VAE that enables positive and negative critiquing. In addition to modeling users' interactions and keyphrase-usage preferences, we model their keyphrase-usage dislikes. Moreover, we design a novel critiquing module that is trained in a self-supervised fashion. Our experiments on two datasets show that M&Ms-VAE+ matches or exceeds M&Ms-VAE in recommendation and explanation performance. Furthermore, our results demonstrate that representing positive and negative critiques differently enables M&Ms-VAE+ to significantly outperform M&Ms-VAE and other models in positive and negative multi-step critiquing.