论文标题

容忍故障的深度学习:层次结构的观点

Fault-Tolerant Deep Learning: A Hierarchical Perspective

论文作者

Liu, Cheng, Gao, Zhen, Liu, Siting, Ning, Xuefei, Li, Huawei, Li, Xiaowei

论文摘要

随着过去十年中深度学习的快速发展,可以预见到,深度学习将不断地部署在越来越多的安全性应用程序中,例如自动驾驶和机器人技术。在这种情况下,可靠性对于在这些应用程序中的深入学习中的部署至关重要,并逐渐成为诸如性能和能源效率之类的主要设计指标中的一流公民。然而,后箱深度学习模型与各种潜在的硬件故障相结合,使弹性的深度学习极具挑战性。在此特别会议中,我们对易于耐故障的深度学习设计方法进行了全面调查,并分别从模型层,体系结构层,电路层和跨层研究了这些方法。

With the rapid advancements of deep learning in the past decade, it can be foreseen that deep learning will be continuously deployed in more and more safety-critical applications such as autonomous driving and robotics. In this context, reliability turns out to be critical to the deployment of deep learning in these applications and gradually becomes a first-class citizen among the major design metrics like performance and energy efficiency. Nevertheless, the back-box deep learning models combined with the diverse underlying hardware faults make resilient deep learning extremely challenging. In this special session, we conduct a comprehensive survey of fault-tolerant deep learning design approaches with a hierarchical perspective and investigate these approaches from model layer, architecture layer, circuit layer, and cross layer respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源