论文标题
时间周期解决方案的全球存在和稳定性对具有源项
Global existence and stability of time-periodic solution to isentropic compressible Euler equations with source term
论文作者
论文摘要
在本文中,我们研究了具有源项$βρ| u |^αu$的一维等速压缩欧拉方程的初始值问题。通过波浪分解和均匀的A-Priori估计,我们证明了超音速范围流动周围的小扰动下的平滑溶液的全球存在。然后,通过Gronwall的不平等,我们得到了平滑的解决方案是时间周期性的。
In this paper, we study the initial-boundary value problem of one-dimensional isentropic compressible Euler equations with the source term $βρ|u|^αu$. By means of wave decomposition and the uniform a-priori estimates, we prove the global existence of smooth solutions under small perturbations around the supersonic Fanno flow. Then, by Gronwall's inequality, we get the smooth solution is time-periodic.