论文标题

Quasi-2-Segal集

Quasi-2-Segal sets

论文作者

Feller, Matthew

论文摘要

我们表明,Dyckerhoff-Kapranov和Gálvez-Kock-tonks的2个七分段空间(也称为分解空间)在简单集中具有自然的模拟,我们称之为Quasi-2-Segal套件,这两个想法享有与Quasi类别相似的相似关系,就像是一个segal Space相似的关系。特别是,我们在简单集的类别上构建了模型结构,其原始物体是准2个隔离集,该集合与完整的2个隔离空间的模型结构相当于quillen(我们的完整性概念来自Segal Space的完整性表征之一)。我们还证明了一个路径空间标准,该标准说,当且仅当其路径空间(也称为décalage)是准类别以及边缘细分标准时,简单集是一个准2个segal集。

We show that the 2-Segal spaces (also called decomposition spaces) of Dyckerhoff-Kapranov and Gálvez-Kock-Tonks have a natural analogue within simplicial sets, which we call quasi-2-Segal sets, and that the two ideas enjoy a similar relationship as the one Segal spaces have with quasi-categories. In particular, we construct a model structure on the category of simplicial sets whose fibrant objects are the quasi-2-Segal sets which is Quillen equivalent to a model structure for complete 2-Segal spaces (where our notion of completeness comes from one of the equivalent characterizations of completeness for Segal spaces). We also prove a path space criterion, which says that a simplicial set is a quasi-2-Segal set if and only if its path spaces (also called décalage) are quasi-categories, as well as an edgewise subdivision criterion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源