论文标题
圆形$(s,t)$ - furstenberg套装的尺寸估算
Dimension Estimates on Circular $(s,t)$-Furstenberg Sets
论文作者
论文摘要
In this paper, we show that circular $(s,t)$-Furstenberg sets in $\mathbb R^2$ have Hausdorff dimension at least $$\max\{\frac{t}3+s,(2t+1)s-t\} \text{ for all $0<s,t\le 1$}.$$ This result extends the previous dimension estimates on circular Kakeya由沃尔夫(Wolff)设置。
In this paper, we show that circular $(s,t)$-Furstenberg sets in $\mathbb R^2$ have Hausdorff dimension at least $$\max\{\frac{t}3+s,(2t+1)s-t\} \text{ for all $0<s,t\le 1$}.$$ This result extends the previous dimension estimates on circular Kakeya sets by Wolff.