论文标题

圆形$(s,t)$ - furstenberg套装的尺寸估算

Dimension Estimates on Circular $(s,t)$-Furstenberg Sets

论文作者

Liu, Jiayin

论文摘要

In this paper, we show that circular $(s,t)$-Furstenberg sets in $\mathbb R^2$ have Hausdorff dimension at least $$\max\{\frac{t}3+s,(2t+1)s-t\} \text{ for all $0<s,t\le 1$}.$$ This result extends the previous dimension estimates on circular Kakeya由沃尔夫(Wolff)设置。

In this paper, we show that circular $(s,t)$-Furstenberg sets in $\mathbb R^2$ have Hausdorff dimension at least $$\max\{\frac{t}3+s,(2t+1)s-t\} \text{ for all $0<s,t\le 1$}.$$ This result extends the previous dimension estimates on circular Kakeya sets by Wolff.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源