论文标题
BIADJOINT标量和来自广义振幅残留物的Associahedra
Biadjoint Scalars and Associahedra from Residues of Generalized Amplitudes
论文作者
论文摘要
在Grassmannian配方中,S-Matrix的平面$ \ Mathcal {n} = 4 $ super yang-mills,$ n^{k-2} MHV $可以通过应用全球残留的theoreem sum a syere n smand a Signed a signed a n s a Signed a n a Sighed a syere n a Signed a syere n s a Signed a syere n s a Signed a syere n s a Signed A syme a sproting sctivating sctivating sctivating sctivating sctivation sptict弹药$(k-2)(n-k-2)$ - 尺寸残留物。这些残留物得到了格拉斯曼尼亚$ g(k,n)$的某些阳性亚属体的支持。 In this paper, we replace the Grassmannian $G(3,n)$ with its torus quotient, the moduli space of $n$ points in the projective plane in general position, and planar $\mathcal{N}=4$ SYM with generalized biadjoint scalar amplitudes $m^{(3)}_n$ as introduced by Cachazo-Early-Guevara-Mizera (CEGM).虽然在帕克 - 泰勒形式的格拉斯曼尼亚配方残留中对应于单个bcfw或壳图,但我们表明,每个这样的$(n-5)$ - 尺寸残留物为$ m^{(3)} _ n $是整个biad scall scalial scallive scallive a amplitude amplitive $ m^fe fe fe fe fe fe {2)固定的平面订单。我们提出了一个概括,该概括将导致$ m^{(2)} _ n $在$ m^{(k)} _ n $内部的标识,$ k \ ge 4 $,通过$(k-2)(n-k-2)(n-k-2)$ - 尺寸残留物。我们的$ k = 3 $的证明使用$ m^{(3)} _ n $的CEGM公式;它预测了第二个hypersimplex $Δ_{2,n} $中的某些源自多型的新的Minkowski总和实现。
In the Grassmannian formulation of the S-matrix for planar $\mathcal{N}=4$ Super Yang-Mills, $N^{k-2}MHV$ scattering amplitudes for $k$ negative and $n-k$ positive helicity gluons can be expressed, by an application of the global residue theorem, as a signed sum over a collection of $(k-2)(n-k-2)$-dimensional residues. These residues are supported on certain positroid subvarieties of the Grassmannian $G(k,n)$. In this paper, we replace the Grassmannian $G(3,n)$ with its torus quotient, the moduli space of $n$ points in the projective plane in general position, and planar $\mathcal{N}=4$ SYM with generalized biadjoint scalar amplitudes $m^{(3)}_n$ as introduced by Cachazo-Early-Guevara-Mizera (CEGM). Whereas in the Grassmannian formulation residues of the Parke-Taylor form correspond to individual BCFW, or on-shell diagrams, we show that each such $(n-5)$-dimensional residue of $m^{(3)}_n$ is an entire biadjoint scalar partial amplitude $m^{(2)}_n$, that is a sum over all tree-level Feynman diagrams for a fixed planar order. We propose a generalization which would give rise to identifications of $m^{(2)}_n$ inside $m^{(k)}_n$ for $k\ge 4$, via $(k-2)(n-k-2)$-dimensional residues. Our proof for $k=3$ uses the CEGM formula for $m^{(3)}_n$; it predicts a new Minkowski sum realization of the associahedron in terms of certain positroid polytopes in the second hypersimplex $Δ_{2,n}$.