论文标题
信号传播:向前通行证中学习和推断的框架
Signal Propagation: A Framework for Learning and Inference In a Forward Pass
论文作者
论文摘要
我们提出了一个新的学习框架,即信号传播(SIGPROP),用于传播学习信号并通过正向通行证更新神经网络参数,以替代反向传播。在Sigprop中,只有推理和学习的前进路径。因此,除了推理模型本身之外,没有必要进行学习进行的结构或计算限制,例如反馈连接性,权重传输或基于反向传播的方法存在于反馈。也就是说,Sigprop仅通过前进道路实现全球监督学习。这是平行培训层或模块的理想选择。在生物学中,这解释了没有反馈连接的神经元如何仍然可以接收全球学习信号。在硬件中,这为全球监督学习提供了一种方法,而无需向后连接。构造的Sigprop与大脑学习模型和硬件的模型相比,而不是返回软件,包括替代方法放松学习限制。我们还证明,Sigprop在时间和记忆上比它们更有效。为了进一步解释Sigprop的行为,我们提供了证据,表明Sigprop在背景下为反向传播提供了有用的学习信号。为了进一步支持与生物和硬件学习的相关性,我们使用Sigprop使用HEBBIAN更新来训练连续的时间神经网络,并仅使用电压或生物学和硬件兼容的替代功能来训练尖峰神经网络。
We propose a new learning framework, signal propagation (sigprop), for propagating a learning signal and updating neural network parameters via a forward pass, as an alternative to backpropagation. In sigprop, there is only the forward path for inference and learning. So, there are no structural or computational constraints necessary for learning to take place, beyond the inference model itself, such as feedback connectivity, weight transport, or a backward pass, which exist under backpropagation based approaches. That is, sigprop enables global supervised learning with only a forward path. This is ideal for parallel training of layers or modules. In biology, this explains how neurons without feedback connections can still receive a global learning signal. In hardware, this provides an approach for global supervised learning without backward connectivity. Sigprop by construction has compatibility with models of learning in the brain and in hardware than backpropagation, including alternative approaches relaxing learning constraints. We also demonstrate that sigprop is more efficient in time and memory than they are. To further explain the behavior of sigprop, we provide evidence that sigprop provides useful learning signals in context to backpropagation. To further support relevance to biological and hardware learning, we use sigprop to train continuous time neural networks with Hebbian updates, and train spiking neural networks with only the voltage or with biologically and hardware compatible surrogate functions.