论文标题

单图内部分布测量使用非本地变异自动编码器

Single Image Internal Distribution Measurement Using Non-Local Variational Autoencoder

论文作者

Sarker, Yeahia, Imran, Abdullah-Al-Zubaer, Ahamed, Md Hafiz, Chakrabortty, Ripon K., Ryan, Michael J., Das, Sajal K.

论文摘要

基于深度学习的超分辨率方法已显示出巨大的希望,尤其是对于单一图像超分辨率(SISR)任务。尽管绩效提高,但这些方法由于依赖于模型培训的大量数据而受到限制。此外,受监督的SISR解决方案依赖于本地邻里信息,仅关注低维图像的重建功能学习过程。此外,由于他们的接收领域有限,他们无法利用全球环境。为了应对这些挑战,本文提出了一种新颖的图像特异性解决方案,即非本地变化自动编码器(\ texttt {nlvae}),以从单个低分辨率(LR)图像中重建高分辨率(HR)图像,而无需任何先前的培训。为了收集各种接受区域和高质量合成图像的最大细节,将\ texttt {nlvae}作为一种自我监督的策略引入,该策略使用来自非局部社区的删除信息来重建高分辨率图像。七个基准数据集的实验结果证明了\ texttt {nlvae}模型的有效性。此外,我们提出的模型优于通过广泛的定性和定量评估确认的许多基线和最先进的方法。

Deep learning-based super-resolution methods have shown great promise, especially for single image super-resolution (SISR) tasks. Despite the performance gain, these methods are limited due to their reliance on copious data for model training. In addition, supervised SISR solutions rely on local neighbourhood information focusing only on the feature learning processes for the reconstruction of low-dimensional images. Moreover, they fail to capitalize on global context due to their constrained receptive field. To combat these challenges, this paper proposes a novel image-specific solution, namely non-local variational autoencoder (\texttt{NLVAE}), to reconstruct a high-resolution (HR) image from a single low-resolution (LR) image without the need for any prior training. To harvest maximum details for various receptive regions and high-quality synthetic images, \texttt{NLVAE} is introduced as a self-supervised strategy that reconstructs high-resolution images using disentangled information from the non-local neighbourhood. Experimental results from seven benchmark datasets demonstrate the effectiveness of the \texttt{NLVAE} model. Moreover, our proposed model outperforms a number of baseline and state-of-the-art methods as confirmed through extensive qualitative and quantitative evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源