论文标题

深神经网络是否有助于多元时间序列异常检测?

Do Deep Neural Networks Contribute to Multivariate Time Series Anomaly Detection?

论文作者

Audibert, Julien, Michiardi, Pietro, Guyard, Frédéric, Marti, Sébastien, Zuluaga, Maria A.

论文摘要

时间序列中的异常检测是一项复杂的任务,已被广泛研究。近年来,无监督的异常检测算法的能力受到了很多关注。这种趋势使研究人员能够在其文章中仅比较基于学习的方法,从而放弃了一些传统的方法。结果,鼓励该领域的社区提出越来越复杂的基于学习的模型,主要基于深度神经网络。据我们所知,在传统,基于机器学习和深度神经网络方法之间没有比较研究,用于检测多元时间序列中异常情况。在这项工作中,我们研究了五个真实世界开放数据集中的16种传统,基于机器学习和深层神经网络方法的异常检测性能。通过分析和比较16种方法中每种方法的性能,我们表明,没有一种方法的家族都超过其他方法。因此,我们鼓励社区在多变量时间序列基准中重新组合三类方法。

Anomaly detection in time series is a complex task that has been widely studied. In recent years, the ability of unsupervised anomaly detection algorithms has received much attention. This trend has led researchers to compare only learning-based methods in their articles, abandoning some more conventional approaches. As a result, the community in this field has been encouraged to propose increasingly complex learning-based models mainly based on deep neural networks. To our knowledge, there are no comparative studies between conventional, machine learning-based and, deep neural network methods for the detection of anomalies in multivariate time series. In this work, we study the anomaly detection performance of sixteen conventional, machine learning-based and, deep neural network approaches on five real-world open datasets. By analyzing and comparing the performance of each of the sixteen methods, we show that no family of methods outperforms the others. Therefore, we encourage the community to reincorporate the three categories of methods in the anomaly detection in multivariate time series benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源