论文标题
与联合元更新的上下文感知的视觉跟踪
Context-aware Visual Tracking with Joint Meta-updating
论文作者
论文摘要
视觉对象跟踪充当各种新兴视频应用程序中的关键组件。尽管视觉跟踪有许多发展,但在跟踪具有巨大变化的对象时,现有的深层跟踪器仍可能会失败。这些深层跟踪器通常不会执行在线更新或更新跟踪模型的单个子分支,因此它们无法适应对象的外观变化。因此,有效的更新方法对于跟踪至关重要,而先前的元高层直接通过参数空间优化跟踪器,这很容易过度拟合甚至在更长的序列上崩溃。为了解决这些问题,我们提出了一个上下文感知的跟踪模型,以优化在表示空间上的跟踪器,该模型通过沿整个顺序利用信息来共同元更新两个分支,以免避免过度拟合的问题。首先,我们注意到本地化分支的嵌入式特征和框估计分支,重点介绍了目标的本地和全局信息,它们相互有效补充。基于此见解,我们设计了一个上下文 - 聚集模块,以融合历史框架中的信息,然后是一个上下文感知的模块,以了解跟踪器两个分支的亲和力向量。此外,由于有限的培训样本,我们还制定了一个专门的元学习计划,该计划是快速和稳定的更新。拟议的跟踪方法以40fps的速度在Dot2018上获得了0.514的EAO得分,这表明其能力提高了基础跟踪器的准确性和鲁棒性,而速度很小。
Visual object tracking acts as a pivotal component in various emerging video applications. Despite the numerous developments in visual tracking, existing deep trackers are still likely to fail when tracking against objects with dramatic variation. These deep trackers usually do not perform online update or update single sub-branch of the tracking model, for which they cannot adapt to the appearance variation of objects. Efficient updating methods are therefore crucial for tracking while previous meta-updater optimizes trackers directly over parameter space, which is prone to over-fit even collapse on longer sequences. To address these issues, we propose a context-aware tracking model to optimize the tracker over the representation space, which jointly meta-update both branches by exploiting information along the whole sequence, such that it can avoid the over-fitting problem. First, we note that the embedded features of the localization branch and the box-estimation branch, focusing on the local and global information of the target, are effective complements to each other. Based on this insight, we devise a context-aggregation module to fuse information in historical frames, followed by a context-aware module to learn affinity vectors for both branches of the tracker. Besides, we develop a dedicated meta-learning scheme, on account of fast and stable updating with limited training samples. The proposed tracking method achieves an EAO score of 0.514 on VOT2018 with the speed of 40FPS, demonstrating its capability of improving the accuracy and robustness of the underlying tracker with little speed drop.