论文标题
概率隐式场景完成
Probabilistic Implicit Scene Completion
论文作者
论文摘要
我们提出了一种扩展到大规模3D场景的连续几何形状的概率完成方法。对3D场景的现实扫描遭受了大量缺少的数据,这些数据被未分段的对象混乱。形状完成的问题本质上是不适合的,高质量的结果需要可扩展的解决方案来考虑多种可能的结果。我们采用生成的细胞自动机,该自动机学习多模式分布并将其转化为处理大规模连续几何形状。局部连续形状会逐渐生成作为稀疏体素嵌入,其中包含每个被占用单元的潜在代码。我们正式得出,嵌入稀疏体素的训练目标最大化了完整形状分布的变异下限,因此我们的渐进生成构成了有效的生成模型。实验表明,我们的模型成功地生成了忠实于输入的各种合理场景,尤其是当输入遭受大量丢失数据时。我们还证明,即使在少量缺失的数据的情况下,我们的方法也超过了确定性模型,这些模型在输入扫描上表现出任何水平的完整性,概率表述对于高质量的几何形状完成至关重要。
We propose a probabilistic shape completion method extended to the continuous geometry of large-scale 3D scenes. Real-world scans of 3D scenes suffer from a considerable amount of missing data cluttered with unsegmented objects. The problem of shape completion is inherently ill-posed, and high-quality result requires scalable solutions that consider multiple possible outcomes. We employ the Generative Cellular Automata that learns the multi-modal distribution and transform the formulation to process large-scale continuous geometry. The local continuous shape is incrementally generated as a sparse voxel embedding, which contains the latent code for each occupied cell. We formally derive that our training objective for the sparse voxel embedding maximizes the variational lower bound of the complete shape distribution and therefore our progressive generation constitutes a valid generative model. Experiments show that our model successfully generates diverse plausible scenes faithful to the input, especially when the input suffers from a significant amount of missing data. We also demonstrate that our approach outperforms deterministic models even in less ambiguous cases with a small amount of missing data, which infers that probabilistic formulation is crucial for high-quality geometry completion on input scans exhibiting any levels of completeness.