论文标题

重新访问具有高容量存储的基于KNN的图像分类系统

Revisiting a kNN-based Image Classification System with High-capacity Storage

论文作者

Nakata, Kengo, Ng, Youyang, Miyashita, Daisuke, Maki, Asuka, Lin, Yu-Chieh, Deguchi, Jun

论文摘要

在使用深神经网络的现有图像分类系统中,图像分类所需的知识隐含在模型参数中。如果用户想更新此知识,则需要微调模型参数。此外,用户无法验证推理结果的有效性或评估知识对结果的贡献。在本文中,我们研究了一个存储图像分类知识的系统,例如图像特征图,标签和原始图像,而不是模型参数,而是在外部高容量存储中。我们的系统在分类​​输入映像时会像数据库一样引用存储。为了增加知识,我们的系统会更新数据库,而不是微调模型参数,从而避免了在增量学习方案中灾难性的遗忘。我们重新访问一个KNN(K-Neartiment邻居)分类器,并在我们的系统中使用它。通过分析KNN算法引用的邻域样本,我们可以解释过去如何将知识用于推理结果。我们的系统在预处理后无需微调模型参数即可在Imagenet数据集上实现79.8%的TOP-1准确性,而在任务增量学习设置中,分配CIFAR-100数据集的精度为90.8%。

In existing image classification systems that use deep neural networks, the knowledge needed for image classification is implicitly stored in model parameters. If users want to update this knowledge, then they need to fine-tune the model parameters. Moreover, users cannot verify the validity of inference results or evaluate the contribution of knowledge to the results. In this paper, we investigate a system that stores knowledge for image classification, such as image feature maps, labels, and original images, not in model parameters but in external high-capacity storage. Our system refers to the storage like a database when classifying input images. To increase knowledge, our system updates the database instead of fine-tuning model parameters, which avoids catastrophic forgetting in incremental learning scenarios. We revisit a kNN (k-Nearest Neighbor) classifier and employ it in our system. By analyzing the neighborhood samples referred by the kNN algorithm, we can interpret how knowledge learned in the past is used for inference results. Our system achieves 79.8% top-1 accuracy on the ImageNet dataset without fine-tuning model parameters after pretraining, and 90.8% accuracy on the Split CIFAR-100 dataset in the task incremental learning setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源