论文标题

部分可观测时空混沌系统的无模型预测

On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane

论文作者

Edelsbrunner, Herbert, Garber, Alexey, Ghafari, Mohadese, Heiss, Teresa, Saghafian, Morteza

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

For a locally finite set in $\mathbb{R}^2$, the order-$k$ Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in $k$. As an example, a stationary Poisson point process in $\mathbb{R}^2$ is locally finite, coarsely dense, and generic with probability one. For such a set, the distribution of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-$1$ Delaunay mosaics given by Miles in 1970.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源