论文标题

周期持续的分数在特征上是代数$ 2 $

Period-doubling Continued Fractions are Algebraic in Characteristic $2$

论文作者

Hu, Yining, Lasjaunias, Alain

论文摘要

考虑到一对独特的和非恒定的多项式,$ a $ a $ a $ a $ a $ a $ a $ \ inthbb {f} _2 [t] $,我们在$ \ mathbb {f} _2((1/t)$中仅等于$ a $ a $ a $ a $ b $等于$ \ mathbb {f} _2((1/t)$)中的持续分数。在第一作者和汉(出现在Acta arithmetica中)的先前作品中,作者考虑了两个案例,在这种情况下,部分商的顺序在每种情况下代表了著名且基本的2美元$ 2 $自动序列,这两种序列都以形态为类似的方式定义。他们可以在第一种情况下(Prouhet-thue-morse序列)证明相应的持续分数(a,b)$的相应持续分数的代数,并给出了第二种情况(周期级序列)的特定对证明。最近,Bugeaud和Han(Arxiv:2203.02213)在第一种情况下证明了任意对的代数。在这里,我们在第二种情况下为任意对提供了简短的证明。

Considering an arbitrary pair of distinct and non constant polynomials, $a$ and $b$ in $\mathbb{F}_2[t]$, we build a continued fraction in $\mathbb{F}_2((1/t))$ whose partial quotients are only equal to $a$ or $b$. In a previous work of the first author and Han (to appear in Acta Arithmetica), the authors considered two cases where the sequence of partial quotients represents in each case a famous and basic $2$-automatic sequence, both defined in a similar way by morphisms. They could prove the algebraicity of the corresponding continued fractions for several pairs $(a,b)$ in the first case (the Prouhet-Thue-Morse sequence) and gave the proof for a particular pair for the second case (the period-doubling sequence). Recently Bugeaud and Han (arXiv:2203.02213) proved the algebraicity for an arbitrary pair in the first case. Here we give a short proof for an arbitrary pair in the second case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源