论文标题
时间敏感的冷启动建议的动态元学习模型
A Dynamic Meta-Learning Model for Time-Sensitive Cold-Start Recommendations
论文作者
论文摘要
我们提出了一种新颖的动态推荐模型,该模型的重点是过去有相互作用但最近变得相对不活动的用户。对这些时间敏感的冷启动用户提出有效的建议对于维护推荐系统的用户群至关重要。由于最近的交互稀疏,精确地捕获这些用户的当前偏好是一项挑战。仅依靠他们的历史互动也可能导致与他们最近的利益失去原位的过时建议。提出的模型利用历史和当前的用户项目交互,并将用户(潜在)的偏好动态分解为特定时间和时间不断发展的表示形式,这些表示会共同影响用户行为。这些潜在因素进一步与优化的物品嵌入,以实现准确,及时的建议。对现实世界数据的实验有助于证明提出的时间敏感的冷启动推荐模型的有效性。
We present a novel dynamic recommendation model that focuses on users who have interactions in the past but turn relatively inactive recently. Making effective recommendations to these time-sensitive cold-start users is critical to maintain the user base of a recommender system. Due to the sparse recent interactions, it is challenging to capture these users' current preferences precisely. Solely relying on their historical interactions may also lead to outdated recommendations misaligned with their recent interests. The proposed model leverages historical and current user-item interactions and dynamically factorizes a user's (latent) preference into time-specific and time-evolving representations that jointly affect user behaviors. These latent factors further interact with an optimized item embedding to achieve accurate and timely recommendations. Experiments over real-world data help demonstrate the effectiveness of the proposed time-sensitive cold-start recommendation model.