论文标题
自我避免对刚性杆堆积椭圆形的影响
Effects of self-avoidance on the packing of stiff rods on ellipsoids
论文作者
论文摘要
使用统计学方法,我们研究了几何学和自我避免对非异型容器内细细丝的订购的影响,考虑了植物细胞中的皮质微管以及病毒capsids中遗传材料的包装作为具体的例子。在平均场近似中,我们通过分析显示容器的形状以及自我避免如何影响刚性杆的排序。我们发现,自我避免相互作用的强度在首选的填料方向中起着重要作用,从而导致扁平细胞的一阶转变,在这种情况下,当自我避免足够强的时,首选方向从沿赤道的方位角变为极性。尽管对于岩体球体,基态始终是极性的顺序,但沿赤道沿赤道具有深度元稳定状态的强大自我避免。我们计算了描述三维参数空间(持续性长度,偏心率和自我避免)中方位角和极性排序之间过渡的临界表面,并表明该系统的临界行为实际上与蝴蝶灾难模型有关。我们计算表面细丝施加的压力和剪切应力,并需要在细丝上施加注射力才能将其插入体积。我们将这些结果与纯粹避免自我忽略的纯机械研究进行了比较,并讨论了相似性和差异。
Using a statistical-mechanics approach, we study the effects of geometry and self-avoidance on the ordering of slender filaments inside non-isotropic containers, considering cortical microtubules in plant cells, and packing of genetic material inside viral capsids as concrete examples. Within a mean-field approximation, we show analytically how the shape of the container, together with self-avoidance, affects the ordering of the stiff rods. We find that the strength of the self-avoiding interaction plays a significant role in the preferred packing orientation, leading to a first-order transition for oblate cells, where the preferred orientation changes from azimuthal, along the equator, to a polar one, when self-avoidance is strong enough. While for prolate spheroids the ground state is always a polar-like order, strong self-avoidance results with a deep meta-stable state along the equator. We compute the critical surface describing the transition between azimuthal and polar ordering in the three dimensional parameter space (persistence length, eccentricity, and self-avoidance) and show that the critical behavior of this system is in fact related to the butterfly catastrophe model. We calculate the pressure and shear stress applied by the filament on the surface, and the injection force needed to be applied on the filament in order to insert it into the volume. We compare these results to the pure mechanical study where self-avoidance is ignored, and discuss similarities and differences.