论文标题

部分可观测时空混沌系统的无模型预测

On the $L_p$ Brunn-Minkowski theory and the $L_p$ Minkowski problem for $C$-coconvex sets

论文作者

Yang, Jin, Ye, Deping, Zhu, Baocheng

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Let $C$ be a pointed closed convex cone in $\mathbb{R}^n$ with vertex at the origin $o$ and having nonempty interior. The set $A\subset C$ is $C$-coconvex if the volume of $A$ is finite and $A^{\bullet}=C\setminus A$ is a closed convex set. For $0<p<1$, the $p$-co-sum of $C$-coconvex sets is introduced, and the corresponding $L_p$ Brunn-Minkowski inequality for $C$-coconvex sets is established. We also define the $L_p$ surface area measures, for $0\neq p\in \mathbb{R}$, of certain $C$-coconvex sets, which are critical in deriving a variational formula of the volume of the Wulff shape associated with a family of functions obtained from the $p$-co-sum. This motivates the $L_p$ Minkowski problem aiming to characterize the $L_p$ surface area measures of $C$-coconvex sets. The existence of solutions to the $L_p$ Minkowski problem for all $0\neq p\in \mathbb{R}$ is established. The $L_p$ Minkowski inequality for $0<p<1$ is proved and is used to obtain the uniqueness of the solutions to the $L_p$ Minkowski problem for $0<p<1$. For $p=0$, we introduce $(1-τ)\diamond A_1\oplus_0τ\diamond A_2$, the log-co-sum of two $C$-coconvex sets $A_{1}$ and $A_{2}$ with respect to $τ\in(0, 1)$, and prove the log-Brunn-Minkowski inequality of $C$-coconvex sets. The log-Minkowski inequality is also obtained and is applied to prove the uniqueness of the solutions to the log-Minkowski problem that characterizes the cone-volume measures of $C$-coconvex sets. Our result solves an open problem raised by Schneider in [Schneider, Adv. Math., 332 (2018), pp. 199-219].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源