论文标题

重新思考位置偏置建模,并通过知识蒸馏进行CTR预测

Rethinking Position Bias Modeling with Knowledge Distillation for CTR Prediction

论文作者

Liu, Congcong, Li, Yuejiang, Zhu, Jian, Zhao, Xiwei, Peng, Changping, Lin, Zhangang, Shao, Jingping

论文摘要

在现实世界在线广告系统中,点击率(CTR)预测非常重要。 CTR预测任务的一个挑战是从单击项目中捕获用户的真正兴趣,这本质上是由项目的提示位置(即更多的前置位置)倾向于获得更高的CTR值。现有作品的流行线重点是通过结果随机估计位置偏差,这是昂贵且效率低下的,或通过逆向倾向加权(IPW),这在很大程度上依赖于倾向估计的质量。另一个常见的解决方案是在离线训练期间将位置建模为功能,并在服务时简单地采用固定值或辍学技巧。但是,训练推断不一致会导致次优性能。此外,点击后信息(例如位置值)的信息丰富,而在CTR预测中却较少利用。这项工作提出了一个简单而有效的知识蒸馏框架,以减轻位置偏见和利用位置信息的影响以改善CTR预测。我们在现实世界中的生产数据集和在线A/B测试中演示了我们提出的方法的性能,从而对竞争基线模型取得了重大改进。所提出的方法已在现实世界的在线广告系统中部署,为世界上最大的电子商业平台之一提供了主要流量。

Click-through rate (CTR) Prediction is of great importance in real-world online ads systems. One challenge for the CTR prediction task is to capture the real interest of users from their clicked items, which is inherently biased by presented positions of items, i.e., more front positions tend to obtain higher CTR values. A popular line of existing works focuses on explicitly estimating position bias by result randomization which is expensive and inefficient, or by inverse propensity weighting (IPW) which relies heavily on the quality of the propensity estimation. Another common solution is modeling position as features during offline training and simply adopting fixed value or dropout tricks when serving. However, training-inference inconsistency can lead to sub-optimal performance. Furthermore, post-click information such as position values is informative while less exploited in CTR prediction. This work proposes a simple yet efficient knowledge distillation framework to alleviate the impact of position bias and leverage position information to improve CTR prediction. We demonstrate the performance of our proposed method on a real-world production dataset and online A/B tests, achieving significant improvements over competing baseline models. The proposed method has been deployed in the real world online ads systems, serving main traffic on one of the world's largest e-commercial platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源