论文标题

对话式开放域问题的多方面改进答案

Multifaceted Improvements for Conversational Open-Domain Question Answering

论文作者

Liang, Tingting, Jiang, Yixuan, Xia, Congying, Zhao, Ziqiang, Yin, Yuyu, Yu, Philip S.

论文摘要

开放域问答(OPENQA)是文本质量检查的重要分支,它根据大量非结构化文档发现给定问题的答案。有效地从开放域中挖掘正确的答案仍然有一个公平的方法。现有的OpenQA系统可能会遇到问题复杂性和歧义性问题以及背景知识不足的问题。最近,提出了对话式OpenQA,以通过对话中的丰富上下文信息来解决这些问题。有希望的是,存在一些基本局限性,包括不准确的问题理解,通道选择的粗略排名以及在培训和推理阶段中使用黄金通道的不一致。为了减轻这些局限性,在本文中,我们提出了一个框架,具有多方面的改进,以进行对话开放域问答(MICQA)。具体而言,MICQA具有三个重要优势。首先,拟议的基于KL-Divergence的正规化能够为检索和答案阅读提供更好的问题理解。其次,添加的后级模块可以将更多相关的段落推向顶部位置,并通过两次限制为读者选择。第三,设计良好的课程学习策略有效地缩小了培训和推理的黄金通道环境之间的差距,并鼓励读者在没有黄金通道帮助的情况下找到真实的答案。在公开可用的数据集OR-QUAC上进行的广泛实验表明,MICQ在对话式OpenQA任务中比最新模型的优越性。

Open-domain question answering (OpenQA) is an important branch of textual QA which discovers answers for the given questions based on a large number of unstructured documents. Effectively mining correct answers from the open-domain sources still has a fair way to go. Existing OpenQA systems might suffer from the issues of question complexity and ambiguity, as well as insufficient background knowledge. Recently, conversational OpenQA is proposed to address these issues with the abundant contextual information in the conversation. Promising as it might be, there exist several fundamental limitations including the inaccurate question understanding, the coarse ranking for passage selection, and the inconsistent usage of golden passage in the training and inference phases. To alleviate these limitations, in this paper, we propose a framework with Multifaceted Improvements for Conversational open-domain Question Answering (MICQA). Specifically, MICQA has three significant advantages. First, the proposed KL-divergence based regularization is able to lead to a better question understanding for retrieval and answer reading. Second, the added post-ranker module can push more relevant passages to the top placements and be selected for reader with a two-aspect constrains. Third, the well designed curriculum learning strategy effectively narrows the gap between the golden passage settings of training and inference, and encourages the reader to find true answer without the golden passage assistance. Extensive experiments conducted on the publicly available dataset OR-QuAC demonstrate the superiority of MICQA over the state-of-the-art model in conversational OpenQA task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源