论文标题
反射和旋转对称性检测
Reflection and Rotation Symmetry Detection via Equivariant Learning
论文作者
论文摘要
检测对称性的固有挑战源于对称模式的任意方向。反射对称性在轴上以特定的方向反映自身,而旋转对称性将其旋转副本与特定方向匹配。因此,从图像中发现这种对称模式因此受益于模棱两可的特征表示,该特征表示随图像的反射和旋转而变化。在这项工作中,我们引入了一个以对称性检测的群体等级卷积网络,称为Equisym,该网络在反射和旋转的二面体群体中利用了e象特征图。所提出的网络是用二型级式层端到端构建的,并经过训练,可以输出空间地图以进行反射轴或旋转中心。我们还提出了一个新的数据集,密集和多样的对称性(dendi),该数据集减轻了现有基准的局限性,以进行反射和旋转对称性检测。实验表明,我们的方法在LDRS和DENDI数据集的对称性检测中实现了艺术状态。
The inherent challenge of detecting symmetries stems from arbitrary orientations of symmetry patterns; a reflection symmetry mirrors itself against an axis with a specific orientation while a rotation symmetry matches its rotated copy with a specific orientation. Discovering such symmetry patterns from an image thus benefits from an equivariant feature representation, which varies consistently with reflection and rotation of the image. In this work, we introduce a group-equivariant convolutional network for symmetry detection, dubbed EquiSym, which leverages equivariant feature maps with respect to a dihedral group of reflection and rotation. The proposed network is built end-to-end with dihedrally-equivariant layers and trained to output a spatial map for reflection axes or rotation centers. We also present a new dataset, DENse and DIverse symmetry (DENDI), which mitigates limitations of existing benchmarks for reflection and rotation symmetry detection. Experiments show that our method achieves the state of the arts in symmetry detection on LDRS and DENDI datasets.