论文标题
基于芯片的激光器具有1 Hertz集成线宽
Chip-Based Laser with 1 Hertz Integrated Linewidth
论文作者
论文摘要
在时间尺度上具有赫兹级线宽的激光器最多对于精确的计量学,计时和量子系统操纵至关重要。这种频率稳定性通常依赖于散装激光器和参考腔,其中利用大小增加以提高噪声性能,但要取决于成本,手工组装和有限的应用环境。另一方面,平面波导激光器和空腔利用了CMOS可伸缩性的好处,但从根本上限制了通过通过随机噪声和波导介质固有的热灵敏度在更长的时间内实现赫兹级线宽的限制。这些物理限制抑制了紧凑型激光系统的发展,其具有频率的频率噪声,这些频率噪声超出了传统的微波处理范围。在这项工作中,我们打破了此范式,以在1548 nm处证明一个紧凑的高稳态激光系统,1 s的集成线宽为1.1 Hz,而分数频率不稳定性小于10 $^{ - 14} $从1 ms到1 s。从自由运行的二极管激光器到1 Hz $^2 $/Hz接近1 Hz的热噪声极限的频率噪声被11 Hz偏移抑制了11个数量级,降至10 $^{ - 3} $ Hz $^$^$^$^2 $/hz的降低。这种低噪声性能利用晶圆尺度的集成激光器以及8毫升真空间隙腔,该腔使用具有子角度粗糙度的微型镜子,可产生118亿美元的光学$ Q $ Q $。值得注意的是,所有关键组件均在平面底物上定义,并具有平行高容量制造的潜力。因此,这项工作为紧凑型激光器提供了重要的进步,该激光器具有Hertz级别的线宽,用于诸如便携式光学时钟,低噪声RF光子光子振荡器以及相关的通信和导航系统等应用。
Lasers with hertz-level linewidths on timescales up to seconds are critical for precision metrology, timekeeping, and manipulation of quantum systems. Such frequency stability typically relies on bulk-optic lasers and reference cavities, where increased size is leveraged to improve noise performance, but with the trade-off of cost, hand assembly, and limited application environments. On the other hand, planar waveguide lasers and cavities exploit the benefits of CMOS scalability but are fundamentally limited from achieving hertz-level linewidths at longer times by stochastic noise and thermal sensitivity inherent to the waveguide medium. These physical limits have inhibited the development of compact laser systems with frequency noise required for portable optical clocks that have performance well beyond conventional microwave counterparts. In this work, we break this paradigm to demonstrate a compact, high-coherence laser system at 1548 nm with a 1 s integrated linewidth of 1.1 Hz and fractional frequency instability less than 10$^{-14}$ from 1 ms to 1 s. The frequency noise at 1 Hz offset is suppressed by 11 orders of magnitude from that of the free-running diode laser down to the cavity thermal noise limit near 1 Hz$^2$/Hz, decreasing to 10$^{-3}$ Hz$^2$/Hz at 4 kHz offset. This low noise performance leverages wafer-scale integrated lasers together with an 8 mL vacuum-gap cavity that employs micro-fabricated mirrors with sub-angstrom roughness to yield an optical $Q$ of 11.8 billion. Significantly, all the critical components are lithographically defined on planar substrates and hold the potential for parallel high-volume manufacturing. Consequently, this work provides an important advance towards compact lasers with hertz-level linewidths for applications such as portable optical clocks, low-noise RF photonic oscillators, and related communication and navigation systems.