论文标题
可取消隐私性脑电图生物特征验证系统的可取消模板设计
Cancellable Template Design for Privacy-Preserving EEG Biometric Authentication Systems
论文作者
论文摘要
作为补充传统生物识别方式的有前途的候选人,近年来,使用脑电图(EEG)数据的脑生物识别技术已受到广泛关注。但是,与现有的生物识别技术(例如指纹和面部识别)相比,对脑电图生物识别技术的研究仍处于婴儿阶段。大多数研究从神经科学的角度着重于设计信号启发方案,或从机器学习的角度开发特征提取和分类算法。这些研究为将脑电图用作生物识别验证方式的可行性奠定了基础,但由于脑电图数据包含敏感信息,它们也提高了安全性和隐私问题。现有的研究使用了哈希功能和加密方案来保护脑电图数据,但是它们没有像可取消模板设计那样提供撤销折衷模板的功能。本文提出了针对基于隐私的EEG身份验证系统的第一个可取消的EEG模板设计,该设计可以保护包含敏感隐私信息(例如身份,健康和认知状态)的RAW EEG信号。基于脑电图图和不可变形的变换开发了一种新型可取消的脑电图模板。提出的转换提供了可取消模板,同时利用脑电图启发方案融合来增强生物识别性能。所提出的身份验证系统在保护原始脑电图数据的同时,在未转化的域中提供了等效的身份验证性能(公共数据库上的8.58 \%eer)。此外,我们分析了该系统抵抗多次攻击的能力,并讨论了一些被忽视但关键的问题以及可能的陷阱,涉及爬山攻击,第二次攻击和基于分类的身份验证系统。
As a promising candidate to complement traditional biometric modalities, brain biometrics using electroencephalography (EEG) data has received a widespread attention in recent years. However, compared with existing biometrics such as fingerprints and face recognition, research on EEG biometrics is still in its infant stage. Most of the studies focus on either designing signal elicitation protocols from the perspective of neuroscience or developing feature extraction and classification algorithms from the viewpoint of machine learning. These studies have laid the ground for the feasibility of using EEG as a biometric authentication modality, but they have also raised security and privacy concerns as EEG data contains sensitive information. Existing research has used hash functions and cryptographic schemes to protect EEG data, but they do not provide functions for revoking compromised templates as in cancellable template design. This paper proposes the first cancellable EEG template design for privacy-preserving EEG-based authentication systems, which can protect raw EEG signals containing sensitive privacy information (e.g., identity, health and cognitive status). A novel cancellable EEG template is developed based on EEG graph features and a non-invertible transform. The proposed transformation provides cancellable templates, while taking advantage of EEG elicitation protocol fusion to enhance biometric performance. The proposed authentication system offers equivalent authentication performance (8.58\% EER on a public database) as in the non-transformed domain, while protecting raw EEG data. Furthermore, we analyze the system's capacity for resisting multiple attacks, and discuss some overlooked but critical issues and possible pitfalls involving hill-climbing attacks, second attacks, and classification-based authentication systems.