论文标题

端到端的桌面问答通过检索 -

End-to-End Table Question Answering via Retrieval-Augmented Generation

论文作者

Pan, Feifei, Canim, Mustafa, Glass, Michael, Gliozzo, Alfio, Hendler, James

论文摘要

大多数现有的端到端表质响应(表QA)模型由一个两阶段的框架组成,其猎犬从语料库和读者中选择相关的表候选者,以从表候选人中找到正确的答案。尽管最近基于变压器的方法可以显着提高读者模型的准确性,但此类框架的总体性能仍然遭受使用传统信息检索技术作为检索器的准确性差。为了减轻此问题,我们介绍了T-RAG,这是一种端到端表质量质量质量质量标准模型,其中非参数密集矢量指数与BART共同进行了微调,Bart是一个参数序列到序列模型,以生成答案令牌。考虑到任何自然语言问题,T-Rag利用统一管道自动搜索表格,以直接从表单元格中找到正确的答案。我们将T-rag应用于最近的开放域表QA基准测试,并证明了微调的T-rag模型能够在端到端表质量检查和表检索任务中实现最先进的性能。

Most existing end-to-end Table Question Answering (Table QA) models consist of a two-stage framework with a retriever to select relevant table candidates from a corpus and a reader to locate the correct answers from table candidates. Even though the accuracy of the reader models is significantly improved with the recent transformer-based approaches, the overall performance of such frameworks still suffers from the poor accuracy of using traditional information retrieval techniques as retrievers. To alleviate this problem, we introduce T-RAG, an end-to-end Table QA model, where a non-parametric dense vector index is fine-tuned jointly with BART, a parametric sequence-to-sequence model to generate answer tokens. Given any natural language question, T-RAG utilizes a unified pipeline to automatically search through a table corpus to directly locate the correct answer from the table cells. We apply T-RAG to recent open-domain Table QA benchmarks and demonstrate that the fine-tuned T-RAG model is able to achieve state-of-the-art performance in both the end-to-end Table QA and the table retrieval tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源