论文标题

学习实例特定的适应跨域细分

Learning Instance-Specific Adaptation for Cross-Domain Segmentation

论文作者

Zou, Yuliang, Zhang, Zizhao, Li, Chun-Liang, Zhang, Han, Pfister, Tomas, Huang, Jia-Bin

论文摘要

我们提出了一种用于跨域图像分割的测试时间适应方法。我们的方法很简单:在测试时间给定一个新的看不见的实例,我们通过进行实例特定的batchNorm(统计)校准来调整预训练的模型。我们的方法具有两个核心组成部分。首先,我们用可学习的模块替换手动设计的批处理校准规则。其次,我们利用强大的数据增强来模拟随机域移动以学习校准规则。与现有的域适应方法相反,我们的方法不需要在训练时间访问目标域数据或进行计算昂贵的测试时间模型培训/优化。通过标准配方训练的模型为我们的方法提供了重大改进,与几个最新的域概括和一声无监督的域适应方法进行了比较。将我们的方法与域的概括方法相结合进一步提高了性能,从而达到了新的最新状态。

We propose a test-time adaptation method for cross-domain image segmentation. Our method is simple: Given a new unseen instance at test time, we adapt a pre-trained model by conducting instance-specific BatchNorm (statistics) calibration. Our approach has two core components. First, we replace the manually designed BatchNorm calibration rule with a learnable module. Second, we leverage strong data augmentation to simulate random domain shifts for learning the calibration rule. In contrast to existing domain adaptation methods, our method does not require accessing the target domain data at training time or conducting computationally expensive test-time model training/optimization. Equipping our method with models trained by standard recipes achieves significant improvement, comparing favorably with several state-of-the-art domain generalization and one-shot unsupervised domain adaptation approaches. Combining our method with the domain generalization methods further improves performance, reaching a new state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源